有了一个点列表,我如何确定它们是否是顺时针顺序的?
例如:
point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)
会说它是逆时针的(对某些人来说是逆时针的)
有了一个点列表,我如何确定它们是否是顺时针顺序的?
例如:
point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)
会说它是逆时针的(对某些人来说是逆时针的)
当前回答
我将提出另一个解决方案,因为它很简单,不需要大量的数学运算,它只是使用了基本的代数。计算多边形的带符号面积。如果是负的,点是顺时针的,如果是正的,点是逆时针的。(这与Beta的解决方案非常相似。)
计算带符号的面积: A = 1/2 * (x1*y2 - x2*y1 + x2*y3 - x3*y2 +…+ xn*y1 - x1*yn)
或者在伪代码中:
signedArea = 0
for each point in points:
x1 = point[0]
y1 = point[1]
if point is last point
x2 = firstPoint[0]
y2 = firstPoint[1]
else
x2 = nextPoint[0]
y2 = nextPoint[1]
end if
signedArea += (x1 * y2 - x2 * y1)
end for
return signedArea / 2
注意,如果你只是检查顺序,你不需要麻烦除以2。
来源:http://mathworld.wolfram.com/PolygonArea.html
其他回答
c#代码实现lhf的答案:
// https://en.wikipedia.org/wiki/Curve_orientation#Orientation_of_a_simple_polygon
public static WindingOrder DetermineWindingOrder(IList<Vector2> vertices)
{
int nVerts = vertices.Count;
// If vertices duplicates first as last to represent closed polygon,
// skip last.
Vector2 lastV = vertices[nVerts - 1];
if (lastV.Equals(vertices[0]))
nVerts -= 1;
int iMinVertex = FindCornerVertex(vertices);
// Orientation matrix:
// [ 1 xa ya ]
// O = | 1 xb yb |
// [ 1 xc yc ]
Vector2 a = vertices[WrapAt(iMinVertex - 1, nVerts)];
Vector2 b = vertices[iMinVertex];
Vector2 c = vertices[WrapAt(iMinVertex + 1, nVerts)];
// determinant(O) = (xb*yc + xa*yb + ya*xc) - (ya*xb + yb*xc + xa*yc)
double detOrient = (b.X * c.Y + a.X * b.Y + a.Y * c.X) - (a.Y * b.X + b.Y * c.X + a.X * c.Y);
// TBD: check for "==0", in which case is not defined?
// Can that happen? Do we need to check other vertices / eliminate duplicate vertices?
WindingOrder result = detOrient > 0
? WindingOrder.Clockwise
: WindingOrder.CounterClockwise;
return result;
}
public enum WindingOrder
{
Clockwise,
CounterClockwise
}
// Find vertex along one edge of bounding box.
// In this case, we find smallest y; in case of tie also smallest x.
private static int FindCornerVertex(IList<Vector2> vertices)
{
int iMinVertex = -1;
float minY = float.MaxValue;
float minXAtMinY = float.MaxValue;
for (int i = 0; i < vertices.Count; i++)
{
Vector2 vert = vertices[i];
float y = vert.Y;
if (y > minY)
continue;
if (y == minY)
if (vert.X >= minXAtMinY)
continue;
// Minimum so far.
iMinVertex = i;
minY = y;
minXAtMinY = vert.X;
}
return iMinVertex;
}
// Return value in (0..n-1).
// Works for i in (-n..+infinity).
// If need to allow more negative values, need more complex formula.
private static int WrapAt(int i, int n)
{
// "+n": Moves (-n..) up to (0..).
return (i + n) % n;
}
求出这些点的质心。
假设有直线从这个点到你们的点。
求line0 line1的两条直线夹角
而不是直线1和直线2
...
...
如果这个角是单调递增的,而不是逆时针递增的,
如果是单调递减,则是顺时针递减
Else(它不是单调的)
你不能决定,所以这是不明智的
在测试了几个不可靠的实现之后,在CW/CCW方向方面提供令人满意结果的算法是由OP在这个线程(shoelace_formula_3)中发布的算法。
与往常一样,正数表示CW方向,而负数表示CCW方向。
正如这篇维基百科文章中所解释的曲线方向,给定平面上的3个点p, q和r(即x和y坐标),您可以计算以下行列式的符号
如果行列式为负(即定向(p, q, r) < 0),则多边形是顺时针方向(CW)。如果行列式为正(即定向(p, q, r) > 0),则多边形是逆时针方向(CCW)。如果点p, q和r共线,行列式为零(即定向(p, q, r) == 0)。
在上面的公式中,由于我们使用的是齐次坐标,我们将1放在p, q和r的坐标前面。
Javascript实现的lhf的答案 (再次强调,这只适用于简单的多边形,即不适用于图8)
let polygon = [ {x:5,y:0}, {x:6,y:4}, {x:4,y:5}, {x:1,y:5}, {x:1,y:0} ] document.body.innerHTML += `Polygon ${polygon.map(p=>`(${p.x}, ${p.y})`).join(", ")} is clockwise? ${isPolygonClockwise(polygon)}` let reversePolygon = [] polygon.forEach(point=>reversePolygon.unshift(point)) document.body.innerHTML += `<br/>Polygon ${reversePolygon.map(p=>`(${p.x}, ${p.y})`).join(", ")} is clockwise? ${isPolygonClockwise(reversePolygon)}` function isPolygonClockwise (polygon) { // From http://www.faqs.org/faqs/graphics/algorithms-faq/ "How do I find the orientation of a simple polygon?" // THIS SOMETIMES FAILS if the polygon is a figure 8, or similar shape where it crosses over itself // Take the lowest point (break ties with the right-most). if (polygon.length < 3) { return true // A single point or two points can't be clockwise/counterclockwise } let previousPoint = polygon[0] let lowestPoint = polygon[1] let nextPoint = polygon[2] polygon.forEach((point, index)=>{ if (point.y > lowestPoint.y || (point.y === lowestPoint.y && point.x > lowestPoint.x)) { // larger y values are lower, in svgs // Break ties with furthest right previousPoint = polygon[(index-1) >= (0) ? (index-1) : (polygon.length-1)] lowestPoint = polygon[index] nextPoint = polygon[(index+1) <= (polygon.length-1) ? (index+1) : (0)] } }) // Check the angle between the previous point, that point, and the next point. // If the angle is less than PI radians, the polygon is clockwise let angle = findAngle(previousPoint, lowestPoint, nextPoint) return angle < Math.PI } function findAngle(A,B,C) { var AB = Math.atan2(B.y-A.y, B.x-A.x); var BC = Math.atan2(C.y-B.y, C.x-B.x); if (AB < 0) AB += Math.PI*2 if (BC < 0) BC += Math.PI*2 return BC-AB; }