有了一个点列表,我如何确定它们是否是顺时针顺序的?
例如:
point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)
会说它是逆时针的(对某些人来说是逆时针的)
有了一个点列表,我如何确定它们是否是顺时针顺序的?
例如:
point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)
会说它是逆时针的(对某些人来说是逆时针的)
当前回答
下面是一个基于@Beta答案的算法的简单c#实现。
让我们假设我们有一个Vector类型,它的X和Y属性为double类型。
public bool IsClockwise(IList<Vector> vertices)
{
double sum = 0.0;
for (int i = 0; i < vertices.Count; i++) {
Vector v1 = vertices[i];
Vector v2 = vertices[(i + 1) % vertices.Count];
sum += (v2.X - v1.X) * (v2.Y + v1.Y);
}
return sum > 0.0;
}
%是执行模运算的模运算符或余数运算符,该运算符(根据维基百科)在一个数除以另一个数后求余数。
根据@MichelRouzic评论的优化版本:
double sum = 0.0;
Vector v1 = vertices[vertices.Count - 1]; // or vertices[^1] with
// C# 8.0+ and .NET Core
for (int i = 0; i < vertices.Count; i++) {
Vector v2 = vertices[i];
sum += (v2.X - v1.X) * (v2.Y + v1.Y);
v1 = v2;
}
return sum > 0.0;
这不仅节省了模运算%,还节省了数组索引。
测试(参见与@WDUK的讨论)
public static bool IsClockwise(IList<(double X, double Y)> vertices)
{
double sum = 0.0;
var v1 = vertices[^1];
for (int i = 0; i < vertices.Count; i++) {
var v2 = vertices[i];
sum += (v2.X - v1.X) * (v2.Y + v1.Y);
Console.WriteLine($"(({v2.X,2}) - ({v1.X,2})) * (({v2.Y,2}) + ({v1.Y,2})) = {(v2.X - v1.X) * (v2.Y + v1.Y)}");
v1 = v2;
}
Console.WriteLine(sum);
return sum > 0.0;
}
public static void Test()
{
Console.WriteLine(IsClockwise(new[] { (-5.0, -5.0), (-5.0, 5.0), (5.0, 5.0), (5.0, -5.0) }));
// infinity Symbol
//Console.WriteLine(IsClockwise(new[] { (-5.0, -5.0), (-5.0, 5.0), (5.0, -5.0), (5.0, 5.0) }));
}
其他回答
一些建议的方法在非凸多边形(如新月形)的情况下会失败。这里有一个简单的方法,它可以用于非凸多边形(它甚至可以用于自相交的多边形,如数字8,告诉你它是否主要是顺时针)。
对边求和,(x2−x1)(y2 + y1)如果结果是正的,曲线是顺时针的,如果结果是负的,曲线是逆时针的。(结果是封闭面积的两倍,采用+/-惯例。)
point[0] = (5,0) edge[0]: (6-5)(4+0) = 4
point[1] = (6,4) edge[1]: (4-6)(5+4) = -18
point[2] = (4,5) edge[2]: (1-4)(5+5) = -30
point[3] = (1,5) edge[3]: (1-1)(0+5) = 0
point[4] = (1,0) edge[4]: (5-1)(0+0) = 0
---
-44 counter-clockwise
如果使用Matlab,如果多边形顶点按顺时针顺序排列,函数ispolycw将返回true。
一个计算上更简单的方法,如果你已经知道多边形内的一个点:
从原始多边形中选择任意线段,按此顺序选择点及其坐标。 加上一个已知的“内部”点,形成一个三角形。 根据以上三点计算CW或CCW。
The cross product measures the degree of perpendicular-ness of two vectors. Imagine that each edge of your polygon is a vector in the x-y plane of a three-dimensional (3-D) xyz space. Then the cross product of two successive edges is a vector in the z-direction, (positive z-direction if the second segment is clockwise, minus z-direction if it's counter-clockwise). The magnitude of this vector is proportional to the sine of the angle between the two original edges, so it reaches a maximum when they are perpendicular, and tapers off to disappear when the edges are collinear (parallel).
因此,对于多边形的每个顶点(点),计算两条相邻边的叉乘大小:
Using your data:
point[0] = (5, 0)
point[1] = (6, 4)
point[2] = (4, 5)
point[3] = (1, 5)
point[4] = (1, 0)
把边连续地标为 edgeA是从point0到point1的段 点1到点2之间的edgeB ... edgeE在point4和point0之间。
那么顶点A (point0)在两者之间 edgeE[从点4到点0] 从point0到' point1'
这两条边本身就是向量,它们的x坐标和y坐标可以通过减去它们的起点和终点的坐标来确定:
edgeE = point0 - point4 = (1,0) - (5,0) = (- 4,0) and edgeA = point1 - point0 = (6,4) - (1,0) = (5,4) and
这两个相邻边的外积是用下面矩阵的行列式来计算的,这个矩阵是通过将两个向量的坐标放在表示三个坐标轴的符号(i, j, & k)下面来构造的。第三个(零)值坐标在那里,因为外积概念是一个三维结构,所以我们将这些2-D向量扩展到3-D,以便应用外积:
i j k
-4 0 0
1 4 0
假设所有的叉乘都产生一个垂直于两个向量相乘平面的向量,上面矩阵的行列式只有一个k(或z轴)分量。 计算k轴或z轴分量大小的公式为 A1 *b2 - a2*b1 = -4* 4 - 0* 1 = -16
这个值的大小(-16)是两个原始向量夹角的正弦值,乘以两个向量大小的乘积。 实际上,它值的另一个公式是 A X B(叉乘)= |A| * |B| * sin(AB)。
为了得到角度的大小你需要用这个值(-16)除以两个向量大小的乘积。
|A| * |B| = 4 *根号(17)= 16.4924…
所以sin(AB) = -16 / 16.4924 = -.97014…
这是一个度量顶点后的下一段是否向左或向右弯曲,以及弯曲的程度。不需要取arcsin函数。我们只关心它的大小,当然还有它的符号(正的还是负的)!
对闭合路径周围的其他4个点都这样做,并将每个顶点的计算值相加。
如果最终的和是正的,就顺时针,负的,逆时针。
正如这篇维基百科文章中所解释的曲线方向,给定平面上的3个点p, q和r(即x和y坐标),您可以计算以下行列式的符号
如果行列式为负(即定向(p, q, r) < 0),则多边形是顺时针方向(CW)。如果行列式为正(即定向(p, q, r) > 0),则多边形是逆时针方向(CCW)。如果点p, q和r共线,行列式为零(即定向(p, q, r) == 0)。
在上面的公式中,由于我们使用的是齐次坐标,我们将1放在p, q和r的坐标前面。