似乎许多项目慢慢地发现需要做矩阵数学,并陷入了首先构建一些向量类,然后慢慢添加功能的陷阱,直到他们被发现构建了一个半成品的自定义线性代数库,并依赖于它。
我想避免这种情况,同时不依赖于一些切线相关的库(例如OpenCV, OpenSceneGraph)。
有哪些常用的矩阵数学/线性代数库,为什么决定使用一个而不是另一个?有没有因为某些原因而被建议不要使用的?我特别在几何/时间上下文中使用这个*(2,3,4 Dim)*,但将来可能会使用更高维度的数据。
我正在寻找关于以下任何方面的差异:API、速度、内存使用、广度/完整性、狭窄性/特异性、可扩展性和/或成熟度/稳定性。
更新
我最终使用了我非常满意的Eigen3。
好吧,我知道你在找什么了。正如Reed Copsey所建议的,GGT似乎是一个相当好的解决方案。
就我个人而言,我们有自己的小库,因为我们经常处理有理点——很多有理点NURBS和bezier。
It turns out that most 3D graphics libraries do computations with projective points that have no basis in projective math, because that's what gets you the answer you want. We ended up using Grassmann points, which have a solid theoretical underpinning and decreased the number of point types. Grassmann points are basically the same computations people are using now, with the benefit of a robust theory. Most importantly, it makes things clearer in our minds, so we have fewer bugs. Ron Goldman wrote a paper on Grassmann points in computer graphics called "On the Algebraic and Geometric Foundations of Computer Graphics".
和你的问题没有直接关系,但是很有趣。