我有这样的代码:

good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]

目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。

我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?


当前回答

一个基于生成器的版本,如果你能忍受一个或两个原始列表的反转。

设置…

random.seed(1234)
a = list(range(10))
random.shuffle(a)
a
[2, 8, 3, 5, 6, 4, 9, 0, 1, 7]

至于分裂……

(list((a.pop(j) for j, y in [(len(a)-i-1, x) for i,x in enumerate(a[::-1])] if y%2 == 0))[::-1], a)
([2, 8, 6, 4, 0], [3, 5, 9, 1, 7])

Another list of tuples of locations and each element is built in reverse order. In a generator wrapped round that each element is tested against the predicate (here test for even) and if True then the element is poped using previously computed locations. We are working backwards along the list so poping elements out does not change positions closer to the beginning of the list. A wrapping list() evaluates the generator and a final revers [::-1] puts the elements back in the right order. The original list "a" now only contains elements that for which the predicate is False.

其他回答

bad = []
good = [x for x in mylist if x in goodvals or bad.append(x)]

append返回None,所以它可以工作。

下面是惰性迭代器方法:

from itertools import tee

def split_on_condition(seq, condition):
    l1, l2 = tee((condition(item), item) for item in seq)
    return (i for p, i in l1 if p), (i for p, i in l2 if not p)

它对每个项计算一次条件,并返回两个生成器,第一个生成条件为真时序列中的值,另一个生成条件为假时序列中的值。

因为它是惰性的,你可以在任何迭代器上使用它,甚至是无限迭代器:

from itertools import count, islice

def is_prime(n):
    return n > 1 and all(n % i for i in xrange(2, n))

primes, not_primes = split_on_condition(count(), is_prime)
print("First 10 primes", list(islice(primes, 10)))
print("First 10 non-primes", list(islice(not_primes, 10)))

通常情况下,非惰性列表返回方法会更好:

def split_on_condition(seq, condition):
    a, b = [], []
    for item in seq:
        (a if condition(item) else b).append(item)
    return a, b

编辑:对于您更具体的用例,将项目按某些键分割到不同的列表中,这里有一个通用函数:

DROP_VALUE = lambda _:_
def split_by_key(seq, resultmapping, keyfunc, default=DROP_VALUE):
    """Split a sequence into lists based on a key function.

        seq - input sequence
        resultmapping - a dictionary that maps from target lists to keys that go to that list
        keyfunc - function to calculate the key of an input value
        default - the target where items that don't have a corresponding key go, by default they are dropped
    """
    result_lists = dict((key, []) for key in resultmapping)
    appenders = dict((key, result_lists[target].append) for target, keys in resultmapping.items() for key in keys)

    if default is not DROP_VALUE:
        result_lists.setdefault(default, [])
        default_action = result_lists[default].append
    else:
        default_action = DROP_VALUE

    for item in seq:
        appenders.get(keyfunc(item), default_action)(item)

    return result_lists

用法:

def file_extension(f):
    return f[2].lower()

split_files = split_by_key(files, {'images': IMAGE_TYPES}, keyfunc=file_extension, default='anims')
print split_files['images']
print split_files['anims']

清晰快速

这个列表理解是简单的阅读和快速。这正是上级要求的。

set_good_vals = set(good_vals)    # Speed boost.
good = [x for x in my_list if x in set_good_vals]
bad = [x for x in my_list if x not in set_good_vals]

我更喜欢一个列表理解而不是两个,但不像张贴的许多答案(其中一些相当巧妙),它是可读的和清晰的。这也是网页上最快的答案之一。

唯一(稍微)快一点的答案是:

set_good_vals = set(good_vals)
good, bad = [], []
for item in my_list:
    _ = good.append(item) if item in set_good_vals else bad.append(item)
    

...还有它的变体。(见我的另一个答案)。但我觉得第一种方法更优雅,而且几乎一样快。

你可以在Python中进行惰性函数编程,像这样:

partition = lambda l, c: map(
  lambda iii: (i for ii in iii for i in ii),
  zip(*(([], [e]) if c(e) else ([e], []) for e in l)))

函数式编程很优雅,但在Python中不是这样。如果你知道你的列表中没有None值,也可以参考这个例子:

partition = lambda l, c: map(
  filter(lambda x: x is not None, l),
  zip(*((None, e) if c(e) else (e, None) for e in l)))

一个基于生成器的版本,如果你能忍受一个或两个原始列表的反转。

设置…

random.seed(1234)
a = list(range(10))
random.shuffle(a)
a
[2, 8, 3, 5, 6, 4, 9, 0, 1, 7]

至于分裂……

(list((a.pop(j) for j, y in [(len(a)-i-1, x) for i,x in enumerate(a[::-1])] if y%2 == 0))[::-1], a)
([2, 8, 6, 4, 0], [3, 5, 9, 1, 7])

Another list of tuples of locations and each element is built in reverse order. In a generator wrapped round that each element is tested against the predicate (here test for even) and if True then the element is poped using previously computed locations. We are working backwards along the list so poping elements out does not change positions closer to the beginning of the list. A wrapping list() evaluates the generator and a final revers [::-1] puts the elements back in the right order. The original list "a" now only contains elements that for which the predicate is False.