我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
当前回答
例如,按偶数和奇数拆分列表
arr = range(20)
even, odd = reduce(lambda res, next: res[next % 2].append(next) or res, arr, ([], []))
或者概括地说:
def split(predicate, iterable):
return reduce(lambda res, e: res[predicate(e)].append(e) or res, iterable, ([], []))
优点:
最短路径 Predicate对每个元素只应用一次
缺点
需要函数式编程范例的知识
其他回答
所有提出的解决方案的问题是,它将扫描和应用过滤功能两次。我会做一个简单的小函数,像这样:
def split_into_two_lists(lst, f):
a = []
b = []
for elem in lst:
if f(elem):
a.append(elem)
else:
b.append(elem)
return a, b
这样你就不会重复处理任何东西,也不会重复代码。
Good = [x for x in mylist if x in goodvals] Bad = [x for x in mylist if x not in goodvals] 我怎样才能做得更优雅呢?
代码已经非常优雅了。
使用集合可能会有轻微的性能改进,但差异是微不足道的。基于集合的方法也会丢弃重复项,并且不会保留元素的顺序。我发现列表理解也更容易阅读。
事实上,我们甚至可以更简单地使用for循环:
good, bad = [], []
for x in mylist:
if x in goodvals:
good.append(f)
else:
bad.append(f)
这种方法可以更容易地添加额外的逻辑。例如,代码很容易被修改为丢弃None值:
good, bad = [], []
for x in mylist:
if x is None:
continue
if x in goodvals:
good.append(f)
else:
bad.append(f)
我转向numpy来解决这个问题,以限制行数,并使其成为一个简单的函数。
我能够得到一个条件满足,将一个列表分为两个,使用np。在哪里分离出一个列表。这适用于数字,但这可以扩展使用字符串和列表,我相信。
在这儿……
from numpy import where as wh, array as arr
midz = lambda a, mid: (a[wh(a > mid)], a[wh((a =< mid))])
p_ = arr([i for i in [75, 50, 403, 453, 0, 25, 428] if i])
high,low = midz(p_, p_.mean())
如果你想用FP风格:
good, bad = [ sum(x, []) for x in zip(*(([y], []) if y in goodvals else ([], [y])
for y in mylist)) ]
不是最易读的解决方案,但至少只遍历mylist一次。
images = [f for f in files if f[2].lower() in IMAGE_TYPES]
anims = [f for f in files if f not in images]
当条件较长时很好,例如在您的示例中。读者不需要弄清楚否定条件以及它是否适用于所有其他情况。