我有这样的代码:

good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]

目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。

我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?


当前回答

受到@gnibbler伟大(但简洁!)回答的启发,我们可以应用该方法映射到多个分区:

from collections import defaultdict

def splitter(l, mapper):
    """Split an iterable into multiple partitions generated by a callable mapper."""

    results = defaultdict(list)

    for x in l:
        results[mapper(x)] += [x]

    return results

然后可以使用splitter,如下所示:

>>> l = [1, 2, 3, 4, 2, 3, 4, 5, 6, 4, 3, 2, 3]
>>> split = splitter(l, lambda x: x % 2 == 0)  # partition l into odds and evens
>>> split.items()
>>> [(False, [1, 3, 3, 5, 3, 3]), (True, [2, 4, 2, 4, 6, 4, 2])]

这适用于有更复杂映射的两个以上分区(也适用于迭代器):

>>> import math
>>> l = xrange(1, 23)
>>> split = splitter(l, lambda x: int(math.log10(x) * 5))
>>> split.items()
[(0, [1]),
 (1, [2]),
 (2, [3]),
 (3, [4, 5, 6]),
 (4, [7, 8, 9]),
 (5, [10, 11, 12, 13, 14, 15]),
 (6, [16, 17, 18, 19, 20, 21, 22])]

或者用字典来映射:

>>> map = {'A': 1, 'X': 2, 'B': 3, 'Y': 1, 'C': 2, 'Z': 3}
>>> l = ['A', 'B', 'C', 'C', 'X', 'Y', 'Z', 'A', 'Z']
>>> split = splitter(l, map.get)
>>> split.items()
(1, ['A', 'Y', 'A']), (2, ['C', 'C', 'X']), (3, ['B', 'Z', 'Z'])]

其他回答

bad = []
good = [x for x in mylist if x in goodvals or bad.append(x)]

append返回None,所以它可以工作。

我认为基于N个条件来划分一个可迭代对象是很方便的

from collections import OrderedDict
def partition(iterable,*conditions):
    '''Returns a list with the elements that satisfy each of condition.
       Conditions are assumed to be exclusive'''
    d= OrderedDict((i,list())for i in range(len(conditions)))        
    for e in iterable:
        for i,condition in enumerate(conditions):
            if condition(e):
                d[i].append(e)
                break                    
    return d.values()

例如:

ints,floats,other = partition([2, 3.14, 1, 1.69, [], None],
                              lambda x: isinstance(x, int), 
                              lambda x: isinstance(x, float),
                              lambda x: True)

print " ints: {}\n floats:{}\n other:{}".format(ints,floats,other)

 ints: [2, 1]
 floats:[3.14, 1.69]
 other:[[], None]

如果元素可以满足多个条件,则删除断点。

之前的答案似乎并不能满足我所有的四种强迫症:

尽可能的懒惰, 只对原始Iterable求值一次 每个项只计算谓词一次 提供良好的类型注释(适用于python 3.7)

我的解决方案并不漂亮,我不认为我可以推荐使用它,但它是:

def iter_split_on_predicate(predicate: Callable[[T], bool], iterable: Iterable[T]) -> Tuple[Iterator[T], Iterator[T]]:
    deque_predicate_true = deque()
    deque_predicate_false = deque()
    
    # define a generator function to consume the input iterable
    # the Predicate is evaluated once per item, added to the appropriate deque, and the predicate result it yielded 
    def shared_generator(definitely_an_iterator):
        for item in definitely_an_iterator:
            print("Evaluate predicate.")
            if predicate(item):
                deque_predicate_true.appendleft(item)
                yield True
            else:
                deque_predicate_false.appendleft(item)
                yield False
    
    # consume input iterable only once,
    # converting to an iterator with the iter() function if necessary. Probably this conversion is unnecessary
    shared_gen = shared_generator(
        iterable if isinstance(iterable, collections.abc.Iterator) else iter(iterable)
    )
    
    # define a generator function for each predicate outcome and queue
    def iter_for(predicate_value, hold_queue):
        def consume_shared_generator_until_hold_queue_contains_something():
            if not hold_queue:
                try:
                    while next(shared_gen) != predicate_value:
                        pass
                except:
                    pass
        
        consume_shared_generator_until_hold_queue_contains_something()
        while hold_queue:
            print("Yield where predicate is "+str(predicate_value))
            yield hold_queue.pop()
            consume_shared_generator_until_hold_queue_contains_something()
    
    # return a tuple of two generators  
    return iter_for(predicate_value=True, hold_queue=deque_predicate_true), iter_for(predicate_value=False, hold_queue=deque_predicate_false)

用下面的测试,我们从print语句中得到如下输出:

t,f = iter_split_on_predicate(lambda item:item>=10,[1,2,3,10,11,12,4,5,6,13,14,15])
print(list(zip(t,f)))
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# [(10, 1), (11, 2), (12, 3), (13, 4), (14, 5), (15, 6)]

第一步(pre-OP-edit):使用集合:

mylist = [1,2,3,4,5,6,7]
goodvals = [1,3,7,8,9]

myset = set(mylist)
goodset = set(goodvals)

print list(myset.intersection(goodset))  # [1, 3, 7]
print list(myset.difference(goodset))    # [2, 4, 5, 6]

这对可读性(IMHO)和性能都有好处。

第二步(post-OP-edit):

创建一个好的扩展列表:

IMAGE_TYPES = set(['.jpg','.jpeg','.gif','.bmp','.png'])

这将提高性能。否则,你现在的情况在我看来还不错。

如果你不想用两行代码来完成一个语义只需要一次的操作,你可以把上面的一些方法(甚至是你自己的方法)包装在一个函数中:

def part_with_predicate(l, pred):
    return [i for i in l if pred(i)], [i for i in l if not pred(i)]

这不是一种惰性计算方法,它确实对列表进行了两次迭代,但是它允许您在一行代码中对列表进行分区。