我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
当前回答
使用布尔逻辑将数据分配给两个数组
>>> images, anims = [[i for i in files if t ^ (i[2].lower() in IMAGE_TYPES) ] for t in (0, 1)]
>>> images
[('file1.jpg', 33, '.jpg')]
>>> anims
[('file2.avi', 999, '.avi')]
其他回答
解决方案
from itertools import tee
def unpack_args(fn):
return lambda t: fn(*t)
def separate(fn, lx):
return map(
unpack_args(
lambda i, ly: filter(
lambda el: bool(i) == fn(el),
ly)),
enumerate(tee(lx, 2)))
test
[even, odd] = separate(
lambda x: bool(x % 2),
[1, 2, 3, 4, 5])
print(list(even) == [2, 4])
print(list(odd) == [1, 3, 5])
所有提出的解决方案的问题是,它将扫描和应用过滤功能两次。我会做一个简单的小函数,像这样:
def split_into_two_lists(lst, f):
a = []
b = []
for elem in lst:
if f(elem):
a.append(elem)
else:
b.append(elem)
return a, b
这样你就不会重复处理任何东西,也不会重复代码。
Good = [x for x in mylist if x in goodvals] Bad = [x for x in mylist if x not in goodvals] 我怎样才能做得更优雅呢?
代码已经非常优雅了。
使用集合可能会有轻微的性能改进,但差异是微不足道的。基于集合的方法也会丢弃重复项,并且不会保留元素的顺序。我发现列表理解也更容易阅读。
事实上,我们甚至可以更简单地使用for循环:
good, bad = [], []
for x in mylist:
if x in goodvals:
good.append(f)
else:
bad.append(f)
这种方法可以更容易地添加额外的逻辑。例如,代码很容易被修改为丢弃None值:
good, bad = [], []
for x in mylist:
if x is None:
continue
if x in goodvals:
good.append(f)
else:
bad.append(f)
第一步(pre-OP-edit):使用集合:
mylist = [1,2,3,4,5,6,7]
goodvals = [1,3,7,8,9]
myset = set(mylist)
goodset = set(goodvals)
print list(myset.intersection(goodset)) # [1, 3, 7]
print list(myset.difference(goodset)) # [2, 4, 5, 6]
这对可读性(IMHO)和性能都有好处。
第二步(post-OP-edit):
创建一个好的扩展列表:
IMAGE_TYPES = set(['.jpg','.jpeg','.gif','.bmp','.png'])
这将提高性能。否则,你现在的情况在我看来还不错。
如果你不想用两行代码来完成一个语义只需要一次的操作,你可以把上面的一些方法(甚至是你自己的方法)包装在一个函数中:
def part_with_predicate(l, pred):
return [i for i in l if pred(i)], [i for i in l if not pred(i)]
这不是一种惰性计算方法,它确实对列表进行了两次迭代,但是它允许您在一行代码中对列表进行分区。