我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
当前回答
我的看法。我提出一个惰性单次配分函数, 它保持输出子序列的相对顺序。
1. 需求
我认为这些要求是:
维护元素的相对顺序(因此,没有集合和 字典) 对于每个元素只计算condition一次(因此不使用 (i)筛选或分组) 允许任意一个序列的惰性消耗(如果我们能够负担得起的话) 预先计算它们,那么naïve实现很可能是 可接受)
2. 把图书馆
我的配分函数(下面介绍)和其他类似的函数 把它变成了一个小图书馆:
python-split
它通常可以通过PyPI安装:
pip install --user split
要根据条件拆分列表,使用partition函数:
>>> from split import partition
>>> files = [ ('file1.jpg', 33L, '.jpg'), ('file2.avi', 999L, '.avi') ]
>>> image_types = ('.jpg','.jpeg','.gif','.bmp','.png')
>>> images, other = partition(lambda f: f[-1] in image_types, files)
>>> list(images)
[('file1.jpg', 33L, '.jpg')]
>>> list(other)
[('file2.avi', 999L, '.avi')]
3.配分函数说明
在内部,我们需要同时构建两个子序列,因此需要消耗 只有一个输出序列强制计算另一个输出序列 了。我们需要在用户请求之间保持状态(存储已处理) 但还没有请求的元素)。为了保持状态,我使用了两个双端 队列(双端队列):
from collections import deque
SplitSeq类负责内部管理:
class SplitSeq:
def __init__(self, condition, sequence):
self.cond = condition
self.goods = deque([])
self.bads = deque([])
self.seq = iter(sequence)
魔术发生在它的. getnext()方法中。就像。next() 的迭代器,但允许指定我们想要的元素类型 这一次。在幕后,它并没有丢弃被拒绝的元素, 而是把它们放在两个队列中的一个:
def getNext(self, getGood=True):
if getGood:
these, those, cond = self.goods, self.bads, self.cond
else:
these, those, cond = self.bads, self.goods, lambda x: not self.cond(x)
if these:
return these.popleft()
else:
while 1: # exit on StopIteration
n = self.seq.next()
if cond(n):
return n
else:
those.append(n)
最终用户应该使用配分函数。它需要 条件函数和序列(就像映射或过滤器),以及 返回两个生成器。的子序列 元素,则第二个元素将构建 互补的子序列。迭代器和生成器允许延迟 偶长序列或无限序列的分裂。
def partition(condition, sequence):
cond = condition if condition else bool # evaluate as bool if condition == None
ss = SplitSeq(cond, sequence)
def goods():
while 1:
yield ss.getNext(getGood=True)
def bads():
while 1:
yield ss.getNext(getGood=False)
return goods(), bads()
为了方便起见,我选择test函数作为第一个参数 将来的部分应用(类似于如何映射和过滤 将test函数作为第一个参数)。
其他回答
解决方案
from itertools import tee
def unpack_args(fn):
return lambda t: fn(*t)
def separate(fn, lx):
return map(
unpack_args(
lambda i, ly: filter(
lambda el: bool(i) == fn(el),
ly)),
enumerate(tee(lx, 2)))
test
[even, odd] = separate(
lambda x: bool(x % 2),
[1, 2, 3, 4, 5])
print(list(even) == [2, 4])
print(list(odd) == [1, 3, 5])
所有提出的解决方案的问题是,它将扫描和应用过滤功能两次。我会做一个简单的小函数,像这样:
def split_into_two_lists(lst, f):
a = []
b = []
for elem in lst:
if f(elem):
a.append(elem)
else:
b.append(elem)
return a, b
这样你就不会重复处理任何东西,也不会重复代码。
第一步(pre-OP-edit):使用集合:
mylist = [1,2,3,4,5,6,7]
goodvals = [1,3,7,8,9]
myset = set(mylist)
goodset = set(goodvals)
print list(myset.intersection(goodset)) # [1, 3, 7]
print list(myset.difference(goodset)) # [2, 4, 5, 6]
这对可读性(IMHO)和性能都有好处。
第二步(post-OP-edit):
创建一个好的扩展列表:
IMAGE_TYPES = set(['.jpg','.jpeg','.gif','.bmp','.png'])
这将提高性能。否则,你现在的情况在我看来还不错。
如果你不想用两行代码来完成一个语义只需要一次的操作,你可以把上面的一些方法(甚至是你自己的方法)包装在一个函数中:
def part_with_predicate(l, pred):
return [i for i in l if pred(i)], [i for i in l if not pred(i)]
这不是一种惰性计算方法,它确实对列表进行了两次迭代,但是它允许您在一行代码中对列表进行分区。
使用布尔逻辑将数据分配给两个数组
>>> images, anims = [[i for i in files if t ^ (i[2].lower() in IMAGE_TYPES) ] for t in (0, 1)]
>>> images
[('file1.jpg', 33, '.jpg')]
>>> anims
[('file2.avi', 999, '.avi')]