现在,每次运行脚本时,我都会导入一个相当大的CSV作为数据框架。是否有一个好的解决方案来保持数据帧在运行之间不断可用,这样我就不必花费所有的时间等待脚本运行?
当前回答
您可以使用羽毛格式的文件。它非常快。
df.to_feather('filename.ft')
其他回答
Numpy文件格式对于数字数据来说非常快
我更喜欢使用numpy文件,因为它们快速且易于使用。 下面是一个简单的基准测试,用于保存和加载一个包含100万个点的1列数据框架。
import numpy as np
import pandas as pd
num_dict = {'voltage': np.random.rand(1000000)}
num_df = pd.DataFrame(num_dict)
使用ipython的%%timeit魔法函数
%%timeit
with open('num.npy', 'wb') as np_file:
np.save(np_file, num_df)
输出为
100 loops, best of 3: 5.97 ms per loop
将数据加载回数据框架
%%timeit
with open('num.npy', 'rb') as np_file:
data = np.load(np_file)
data_df = pd.DataFrame(data)
输出为
100 loops, best of 3: 5.12 ms per loop
不坏!
CONS
如果您使用python 2保存numpy文件,然后尝试使用python 3打开,则会出现问题(反之亦然)。
泡菜很好!
import pandas as pd
df.to_pickle('123.pkl') #to save the dataframe, df to 123.pkl
df1 = pd.read_pickle('123.pkl') #to load 123.pkl back to the dataframe df
如前所述,有不同的选项和文件格式(HDF5, JSON, CSV, parquet, SQL)来存储数据帧。然而,pickle不是一级公民(取决于你的设置),因为:
泡菜是一个潜在的安全隐患。形成pickle的Python文档:
警告pickle模块不安全 恶意构造的数据。对象接收的数据永远不能解pickle 不受信任或未经身份验证的源。
泡菜很慢。找到这里和这里的基准。
根据您的设置/使用情况,这两个限制都不适用,但我不建议将pickle作为pandas数据帧的默认持久性。
这里有很多很棒和充分的答案,但我想发布一个我在Kaggle上使用的测试,这个测试用不同的pandas兼容格式保存和读取大df:
https://www.kaggle.com/pedrocouto39/fast-reading-w-pickle-feather-parquet-jay
我不是作者,也不是作者的朋友,然而,当我读到这个问题时,我觉得值得一提。
CSV: 1分42秒泡菜:4.45秒羽毛:4.35秒拼花:8.31秒杰伦:8.12毫秒 或者0.0812秒(超快的!)
虽然已经有一些答案,我找到了一个很好的比较,他们尝试了几种方法来序列化熊猫数据框架:有效地存储熊猫数据框架。
他们比较:
pickle:原始ASCII数据格式 cPickle,一个C库 Pickle-p2:使用更新的二进制格式 Json: standardlib Json库 json-no-index:类似json,但没有索引 msgpack:二进制JSON替代品 CSV hdfstore: HDF5存储格式
在他们的实验中,他们序列化了一个包含1,000,000行的DataFrame,并分别测试了两列:一列是文本数据,另一列是数字。他们的免责声明说:
您不应该相信以下内容适用于您的数据。您应该查看自己的数据并自己运行基准测试
他们提到的测试源代码可以在网上找到。由于这段代码不能直接工作,我做了一些小更改,您可以在这里看到:serialize.py 我得到了以下结果:
他们还提到,通过将文本数据转换为分类数据,序列化速度要快得多。在他们的测试中,大约是10倍的速度(另见测试代码)。
编辑:pickle的时间比CSV的时间长可以用所使用的数据格式来解释。默认情况下,pickle使用可打印的ASCII表示,这会生成更大的数据集。然而,从图中可以看出,使用更新的二进制数据格式(版本2,pickle-p2)的pickle加载时间要短得多。
其他参考资料:
在“最快的Python库来读取CSV文件”这个问题中,有一个非常详细的答案,它比较了不同的库来读取CSV文件的基准。结果是,对于读取csv文件,numpy.fromfile是最快的。 另一个序列化测试 显示msgpack, usjson和cPickle在序列化中是最快的。
推荐文章
- 如何删除Python中的前导空白?
- python中的assertEquals和assertEqual
- 如何保持Python打印不添加换行符或空格?
- 为什么Python的无穷散列中有π的数字?
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?