Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

上面的一个答案中有一个mab的注释,它有这个方法。瓶颈有move_mean,这是一个简单的移动平均:

import numpy as np
import bottleneck as bn

a = np.arange(10) + np.random.random(10)

mva = bn.move_mean(a, window=2, min_count=1)

Min_count是一个很方便的参数,它可以取数组中该点的移动平均值。如果你不设置min_count,它将等于window,并且直到window points的所有内容都将是nan。

其他回答

有关现成的解决方案,请参见https://scipy-cookbook.readthedocs.io/items/SignalSmooth.html。 它提供了平窗类型的运行平均值。请注意,这比简单的do-it-yourself卷积方法要复杂一些,因为它试图通过反射数据来处理数据开头和结尾的问题(在您的情况下可能有效,也可能无效……)。

首先,你可以试着:

a = np.random.random(100)
plt.plot(a)
b = smooth(a, window='flat')
plt.plot(b)

如果你选择自己生成,而不是使用现有的库,请注意浮点错误并尽量减少其影响:

class SumAccumulator:
    def __init__(self):
        self.values = [0]
        self.count = 0

    def add( self, val ):
        self.values.append( val )
        self.count = self.count + 1
        i = self.count
        while i & 0x01:
            i = i >> 1
            v0 = self.values.pop()
            v1 = self.values.pop()
            self.values.append( v0 + v1 )

    def get_total(self):
        return sum( reversed(self.values) )

    def get_size( self ):
        return self.count

如果所有的值都是大致相同的数量级,那么这将通过始终添加大致相似的数量级值来帮助保持精度。

移动平均过滤器怎么样?它也是一个单行程序,它的优点是,如果你需要矩形以外的东西,你可以很容易地操作窗口类型。一个n长的简单移动平均数组a:

lfilter(np.ones(N)/N, [1], a)[N:]

应用三角形窗口后:

lfilter(np.ones(N)*scipy.signal.triang(N)/N, [1], a)[N:]

注:我通常会在最后丢弃前N个样本作为假的,因此[N:],但这是没有必要的,只是个人选择的问题。

我的解决方案是基于维基百科上的“简单移动平均”。

from numba import jit
@jit
def sma(x, N):
    s = np.zeros_like(x)
    k = 1 / N
    s[0] = x[0] * k
    for i in range(1, N + 1):
        s[i] = s[i - 1] + x[i] * k
    for i in range(N, x.shape[0]):
        s[i] = s[i - 1] + (x[i] - x[i - N]) * k
    s = s[N - 1:]
    return s

与之前建议的解决方案相比,它比scipy最快的解决方案“uniform_filter1d”快两倍,并且具有相同的错误顺序。 速度测试:

import numpy as np    
x = np.random.random(10000000)
N = 1000

from scipy.ndimage.filters import uniform_filter1d
%timeit uniform_filter1d(x, size=N)
95.7 ms ± 9.34 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit sma(x, N)
47.3 ms ± 3.42 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

错误的比较:

np.max(np.abs(np.convolve(x, np.ones((N,))/N, mode='valid') - uniform_filter1d(x, size=N, mode='constant', origin=-(N//2))[:-(N-1)]))
8.604228440844963e-14
np.max(np.abs(np.convolve(x, np.ones((N,))/N, mode='valid') - sma(x, N)))
1.41886502547095e-13

我觉得使用瓶颈可以很好地解决这个问题

参见下面的基本示例:

import numpy as np
import bottleneck as bn

a = np.random.randint(4, 1000, size=100)
mm = bn.move_mean(a, window=5, min_count=1)

“mm”是“a”的移动平均值。 “窗口”是考虑移动均值的最大条目数。 "min_count"是考虑移动平均值的最小条目数(例如,对于前几个元素或如果数组有nan值)。

好在瓶颈有助于处理nan值,而且非常高效。