Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

使用@Aikude的变量,我编写了一行程序。

import numpy as np

mylist = [1, 2, 3, 4, 5, 6, 7]
N = 3

mean = [np.mean(mylist[x:x+N]) for x in range(len(mylist)-N+1)]
print(mean)

>>> [2.0, 3.0, 4.0, 5.0, 6.0]

其他回答

你可以使用scipy. nmage .uniform_filter1d:

import numpy as np
from scipy.ndimage import uniform_filter1d
N = 1000
x = np.random.random(100000)
y = uniform_filter1d(x, size=N)

uniform_filter1d:

给出具有相同numpy形状的输出(即点数) 允许多种方式处理边界,其中'reflect'是默认的,但在我的情况下,我更想要'nearest'

它也相当快(比np快近50倍)。卷积,比上述cumsum方法快2-5倍):

%timeit y1 = np.convolve(x, np.ones((N,))/N, mode='same')
100 loops, best of 3: 9.28 ms per loop

%timeit y2 = uniform_filter1d(x, size=N)
10000 loops, best of 3: 191 µs per loop

这里有3个函数可以让你比较不同实现的错误/速度:

from __future__ import division
import numpy as np
import scipy.ndimage as ndi
def running_mean_convolve(x, N):
    return np.convolve(x, np.ones(N) / float(N), 'valid')
def running_mean_cumsum(x, N):
    cumsum = np.cumsum(np.insert(x, 0, 0))
    return (cumsum[N:] - cumsum[:-N]) / float(N)
def running_mean_uniform_filter1d(x, N):
    return ndi.uniform_filter1d(x, N, mode='constant', origin=-(N//2))[:-(N-1)]

更新:已经提出了更有效的解决方案,scipy的uniform_filter1d可能是“标准”第三方库中最好的,还有一些更新的或专门的库可用。


你可以用np。卷积得到:

np.convolve(x, np.ones(N)/N, mode='valid')

解释

The running mean is a case of the mathematical operation of convolution. For the running mean, you slide a window along the input and compute the mean of the window's contents. For discrete 1D signals, convolution is the same thing, except instead of the mean you compute an arbitrary linear combination, i.e., multiply each element by a corresponding coefficient and add up the results. Those coefficients, one for each position in the window, are sometimes called the convolution kernel. The arithmetic mean of N values is (x_1 + x_2 + ... + x_N) / N, so the corresponding kernel is (1/N, 1/N, ..., 1/N), and that's exactly what we get by using np.ones(N)/N.

边缘

np的模态参数。Convolve指定如何处理边缘。我在这里选择有效模式,因为我认为这是大多数人期望的运行方式,但您可能有其他优先级。下面是一个图表,说明了模式之间的差异:

import numpy as np
import matplotlib.pyplot as plt
modes = ['full', 'same', 'valid']
for m in modes:
    plt.plot(np.convolve(np.ones(200), np.ones(50)/50, mode=m));
plt.axis([-10, 251, -.1, 1.1]);
plt.legend(modes, loc='lower center');
plt.show()

我的解决方案是基于维基百科上的“简单移动平均”。

from numba import jit
@jit
def sma(x, N):
    s = np.zeros_like(x)
    k = 1 / N
    s[0] = x[0] * k
    for i in range(1, N + 1):
        s[i] = s[i - 1] + x[i] * k
    for i in range(N, x.shape[0]):
        s[i] = s[i - 1] + (x[i] - x[i - N]) * k
    s = s[N - 1:]
    return s

与之前建议的解决方案相比,它比scipy最快的解决方案“uniform_filter1d”快两倍,并且具有相同的错误顺序。 速度测试:

import numpy as np    
x = np.random.random(10000000)
N = 1000

from scipy.ndimage.filters import uniform_filter1d
%timeit uniform_filter1d(x, size=N)
95.7 ms ± 9.34 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit sma(x, N)
47.3 ms ± 3.42 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

错误的比较:

np.max(np.abs(np.convolve(x, np.ones((N,))/N, mode='valid') - uniform_filter1d(x, size=N, mode='constant', origin=-(N//2))[:-(N-1)]))
8.604228440844963e-14
np.max(np.abs(np.convolve(x, np.ones((N,))/N, mode='valid') - sma(x, N)))
1.41886502547095e-13

如果你必须为非常小的数组(少于200个元素)重复这样做,我发现只用线性代数就能得到最快的结果。 最慢的部分是建立你的乘法矩阵y,你只需要做一次,但之后可能会更快。

import numpy as np
import random 

N = 100      # window size
size =200     # array length

x = np.random.random(size)
y = np.eye(size, dtype=float)

# prepare matrix
for i in range(size):
  y[i,i:i+N] = 1./N
  
# calculate running mean
z = np.inner(x,y.T)[N-1:]

更新:下面的例子展示了老熊猫。Rolling_mean函数,该函数在最近版本的pandas中已被删除。该函数调用的现代等价函数将使用pandas.Series.rolling:

In [8]: pd.Series(x).rolling(window=N).mean().iloc[N-1:].values
Out[8]: 
array([ 0.49815397,  0.49844183,  0.49840518, ...,  0.49488191,
        0.49456679,  0.49427121])

pandas比NumPy或SciPy更适合这一点。它的函数rolling_mean很方便地完成了这项工作。当输入是一个数组时,它还返回一个NumPy数组。

使用任何定制的纯Python实现都很难在性能上击败rolling_mean。下面是针对两个提议的解决方案的性能示例:

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: def running_mean(x, N):
   ...:     cumsum = np.cumsum(np.insert(x, 0, 0)) 
   ...:     return (cumsum[N:] - cumsum[:-N]) / N
   ...:

In [4]: x = np.random.random(100000)

In [5]: N = 1000

In [6]: %timeit np.convolve(x, np.ones((N,))/N, mode='valid')
10 loops, best of 3: 172 ms per loop

In [7]: %timeit running_mean(x, N)
100 loops, best of 3: 6.72 ms per loop

In [8]: %timeit pd.rolling_mean(x, N)[N-1:]
100 loops, best of 3: 4.74 ms per loop

In [9]: np.allclose(pd.rolling_mean(x, N)[N-1:], running_mean(x, N))
Out[9]: True

关于如何处理边缘值,也有很好的选项。