Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

使用@Aikude的变量,我编写了一行程序。

import numpy as np

mylist = [1, 2, 3, 4, 5, 6, 7]
N = 3

mean = [np.mean(mylist[x:x+N]) for x in range(len(mylist)-N+1)]
print(mean)

>>> [2.0, 3.0, 4.0, 5.0, 6.0]

其他回答

我觉得使用瓶颈可以很好地解决这个问题

参见下面的基本示例:

import numpy as np
import bottleneck as bn

a = np.random.randint(4, 1000, size=100)
mm = bn.move_mean(a, window=5, min_count=1)

“mm”是“a”的移动平均值。 “窗口”是考虑移动均值的最大条目数。 "min_count"是考虑移动平均值的最小条目数(例如,对于前几个元素或如果数组有nan值)。

好在瓶颈有助于处理nan值,而且非常高效。

上面有很多关于计算运行平均值的答案。我的回答增加了两个额外的特征:

忽略nan值 计算N个相邻值的平均值,不包括兴趣值本身

这第二个特征对于确定哪些值与总体趋势有一定的差异特别有用。

我使用numpy。cumsum,因为这是最省时的方法(参见上面Alleo的回答)。

N=10 # number of points to test on each side of point of interest, best if even
padded_x = np.insert(np.insert( np.insert(x, len(x), np.empty(int(N/2))*np.nan), 0, np.empty(int(N/2))*np.nan ),0,0)
n_nan = np.cumsum(np.isnan(padded_x))
cumsum = np.nancumsum(padded_x) 
window_sum = cumsum[N+1:] - cumsum[:-(N+1)] - x # subtract value of interest from sum of all values within window
window_n_nan = n_nan[N+1:] - n_nan[:-(N+1)] - np.isnan(x)
window_n_values = (N - window_n_nan)
movavg = (window_sum) / (window_n_values)

这段代码只适用于偶数n。它可以通过改变np来调整奇数。插入padded_x和n_nan。

输出示例(黑色为raw,蓝色为movavg):

这段代码可以很容易地修改,以删除从小于cutoff = 3的非nan值计算的所有移动平均值。

window_n_values = (N - window_n_nan).astype(float) # dtype must be float to set some values to nan
cutoff = 3
window_n_values[window_n_values<cutoff] = np.nan
movavg = (window_sum) / (window_n_values)

一个新的卷积配方被合并到Python 3.10中。

鉴于


import collections, operator

from itertools import chain, repeat


size = 3 + 1
kernel = [1/size] * size                                              

Code

def convolve(signal, kernel):
    # See:  https://betterexplained.com/articles/intuitive-convolution/
    # convolve(data, [0.25, 0.25, 0.25, 0.25]) --> Moving average (blur)
    # convolve(data, [1, -1]) --> 1st finite difference (1st derivative)
    # convolve(data, [1, -2, 1]) --> 2nd finite difference (2nd derivative)
    kernel = list(reversed(kernel))
    n = len(kernel)
    window = collections.deque([0] * n, maxlen=n)
    for x in chain(signal, repeat(0, n-1)):
        window.append(x)
        yield sum(map(operator.mul, kernel, window))

Demo

list(convolve(range(1, 6), kernel))
# [0.25, 0.75, 1.5, 2.5, 3.5, 3.0, 2.25, 1.25]

细节

卷积是一种可以应用于移动平均的一般数学运算。其思想是,给定一些数据,您将数据子集(窗口)作为“掩码”或“内核”在数据中滑动,在每个窗口上执行特定的数学操作。在移动平均的情况下,核是平均值:

现在可以通过more_itertools.convolve使用这个实现。 More_itertools是一个流行的第三方包;通过> PIP Install more_itertools安装。

另一个解决方案是使用标准库和deque:

from collections import deque
import itertools

def moving_average(iterable, n=3):
    # http://en.wikipedia.org/wiki/Moving_average
    it = iter(iterable) 
    # create an iterable object from input argument
    d = deque(itertools.islice(it, n-1))  
    # create deque object by slicing iterable
    d.appendleft(0)
    s = sum(d)
    for elem in it:
        s += elem - d.popleft()
        d.append(elem)
        yield s / n

# example on how to use it
for i in  moving_average([40, 30, 50, 46, 39, 44]):
    print(i)

# 40.0
# 42.0
# 45.0
# 43.0

另一种不使用numpy或pandas找到移动平均线的方法

import itertools
sample = [2, 6, 10, 8, 11, 10]
list(itertools.starmap(
    lambda a,b: b/a, 
    enumerate(itertools.accumulate(sample), 1))
)

将打印[2.0,4.0,6.0,6.5,7.4,7.83333333333333333]

2.0 = (2)/1 4.0 is (2 + 6) / 2 6.0 = (2 + 6 + 10) / 3 .