Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

使用@Aikude的变量,我编写了一行程序。

import numpy as np

mylist = [1, 2, 3, 4, 5, 6, 7]
N = 3

mean = [np.mean(mylist[x:x+N]) for x in range(len(mylist)-N+1)]
print(mean)

>>> [2.0, 3.0, 4.0, 5.0, 6.0]

其他回答

或用于python计算的模块

在我在Tradewave.net的测试中,TA-lib总是赢:

import talib as ta
import numpy as np
import pandas as pd
import scipy
from scipy import signal
import time as t

PAIR = info.primary_pair
PERIOD = 30

def initialize():
    storage.reset()
    storage.elapsed = storage.get('elapsed', [0,0,0,0,0,0])

def cumsum_sma(array, period):
    ret = np.cumsum(array, dtype=float)
    ret[period:] = ret[period:] - ret[:-period]
    return ret[period - 1:] / period

def pandas_sma(array, period):
    return pd.rolling_mean(array, period)

def api_sma(array, period):
    # this method is native to Tradewave and does NOT return an array
    return (data[PAIR].ma(PERIOD))

def talib_sma(array, period):
    return ta.MA(array, period)

def convolve_sma(array, period):
    return np.convolve(array, np.ones((period,))/period, mode='valid')

def fftconvolve_sma(array, period):    
    return scipy.signal.fftconvolve(
        array, np.ones((period,))/period, mode='valid')    

def tick():

    close = data[PAIR].warmup_period('close')

    t1 = t.time()
    sma_api = api_sma(close, PERIOD)
    t2 = t.time()
    sma_cumsum = cumsum_sma(close, PERIOD)
    t3 = t.time()
    sma_pandas = pandas_sma(close, PERIOD)
    t4 = t.time()
    sma_talib = talib_sma(close, PERIOD)
    t5 = t.time()
    sma_convolve = convolve_sma(close, PERIOD)
    t6 = t.time()
    sma_fftconvolve = fftconvolve_sma(close, PERIOD)
    t7 = t.time()

    storage.elapsed[-1] = storage.elapsed[-1] + t2-t1
    storage.elapsed[-2] = storage.elapsed[-2] + t3-t2
    storage.elapsed[-3] = storage.elapsed[-3] + t4-t3
    storage.elapsed[-4] = storage.elapsed[-4] + t5-t4
    storage.elapsed[-5] = storage.elapsed[-5] + t6-t5    
    storage.elapsed[-6] = storage.elapsed[-6] + t7-t6        

    plot('sma_api', sma_api)  
    plot('sma_cumsum', sma_cumsum[-5])
    plot('sma_pandas', sma_pandas[-10])
    plot('sma_talib', sma_talib[-15])
    plot('sma_convolve', sma_convolve[-20])    
    plot('sma_fftconvolve', sma_fftconvolve[-25])

def stop():

    log('ticks....: %s' % info.max_ticks)

    log('api......: %.5f' % storage.elapsed[-1])
    log('cumsum...: %.5f' % storage.elapsed[-2])
    log('pandas...: %.5f' % storage.elapsed[-3])
    log('talib....: %.5f' % storage.elapsed[-4])
    log('convolve.: %.5f' % storage.elapsed[-5])    
    log('fft......: %.5f' % storage.elapsed[-6])

结果:

[2015-01-31 23:00:00] ticks....: 744
[2015-01-31 23:00:00] api......: 0.16445
[2015-01-31 23:00:00] cumsum...: 0.03189
[2015-01-31 23:00:00] pandas...: 0.03677
[2015-01-31 23:00:00] talib....: 0.00700  # <<< Winner!
[2015-01-31 23:00:00] convolve.: 0.04871
[2015-01-31 23:00:00] fft......: 0.22306

我觉得使用瓶颈可以很好地解决这个问题

参见下面的基本示例:

import numpy as np
import bottleneck as bn

a = np.random.randint(4, 1000, size=100)
mm = bn.move_mean(a, window=5, min_count=1)

“mm”是“a”的移动平均值。 “窗口”是考虑移动均值的最大条目数。 "min_count"是考虑移动平均值的最小条目数(例如,对于前几个元素或如果数组有nan值)。

好在瓶颈有助于处理nan值,而且非常高效。

我还没有检查这有多快,但你可以试试:

from collections import deque

cache = deque() # keep track of seen values
n = 10          # window size
A = xrange(100) # some dummy iterable
cum_sum = 0     # initialize cumulative sum

for t, val in enumerate(A, 1):
    cache.append(val)
    cum_sum += val
    if t < n:
        avg = cum_sum / float(t)
    else:                           # if window is saturated,
        cum_sum -= cache.popleft()  # subtract oldest value
        avg = cum_sum / float(n)

更新:下面的例子展示了老熊猫。Rolling_mean函数,该函数在最近版本的pandas中已被删除。该函数调用的现代等价函数将使用pandas.Series.rolling:

In [8]: pd.Series(x).rolling(window=N).mean().iloc[N-1:].values
Out[8]: 
array([ 0.49815397,  0.49844183,  0.49840518, ...,  0.49488191,
        0.49456679,  0.49427121])

pandas比NumPy或SciPy更适合这一点。它的函数rolling_mean很方便地完成了这项工作。当输入是一个数组时,它还返回一个NumPy数组。

使用任何定制的纯Python实现都很难在性能上击败rolling_mean。下面是针对两个提议的解决方案的性能示例:

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: def running_mean(x, N):
   ...:     cumsum = np.cumsum(np.insert(x, 0, 0)) 
   ...:     return (cumsum[N:] - cumsum[:-N]) / N
   ...:

In [4]: x = np.random.random(100000)

In [5]: N = 1000

In [6]: %timeit np.convolve(x, np.ones((N,))/N, mode='valid')
10 loops, best of 3: 172 ms per loop

In [7]: %timeit running_mean(x, N)
100 loops, best of 3: 6.72 ms per loop

In [8]: %timeit pd.rolling_mean(x, N)[N-1:]
100 loops, best of 3: 4.74 ms per loop

In [9]: np.allclose(pd.rolling_mean(x, N)[N-1:], running_mean(x, N))
Out[9]: True

关于如何处理边缘值,也有很好的选项。

使用@Aikude的变量,我编写了一行程序。

import numpy as np

mylist = [1, 2, 3, 4, 5, 6, 7]
N = 3

mean = [np.mean(mylist[x:x+N]) for x in range(len(mylist)-N+1)]
print(mean)

>>> [2.0, 3.0, 4.0, 5.0, 6.0]