Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

另一种不使用numpy或pandas找到移动平均线的方法

import itertools
sample = [2, 6, 10, 8, 11, 10]
list(itertools.starmap(
    lambda a,b: b/a, 
    enumerate(itertools.accumulate(sample), 1))
)

将打印[2.0,4.0,6.0,6.5,7.4,7.83333333333333333]

2.0 = (2)/1 4.0 is (2 + 6) / 2 6.0 = (2 + 6 + 10) / 3 .

其他回答

有关现成的解决方案,请参见https://scipy-cookbook.readthedocs.io/items/SignalSmooth.html。 它提供了平窗类型的运行平均值。请注意,这比简单的do-it-yourself卷积方法要复杂一些,因为它试图通过反射数据来处理数据开头和结尾的问题(在您的情况下可能有效,也可能无效……)。

首先,你可以试着:

a = np.random.random(100)
plt.plot(a)
b = smooth(a, window='flat')
plt.plot(b)

你可以用以下方法计算运行平均值:

import numpy as np

def runningMean(x, N):
    y = np.zeros((len(x),))
    for ctr in range(len(x)):
         y[ctr] = np.sum(x[ctr:(ctr+N)])
    return y/N

但是速度很慢。

幸运的是,numpy包含一个卷积函数,我们可以用它来加快速度。运行均值相当于将x与一个长度为N的向量进行卷积,其中所有元素都等于1/N。卷积的numpy实现包括起始瞬态,所以你必须删除前N-1点:

def runningMeanFast(x, N):
    return np.convolve(x, np.ones((N,))/N)[(N-1):]

在我的机器上,快速版本要快20-30倍,这取决于输入向量的长度和平均窗口的大小。

请注意,卷积确实包括一个“相同”模式,它似乎应该解决开始的瞬态问题,但它在开始和结束之间分割。

比起numpy或scipy,我建议熊猫们更快地做到这一点:

df['data'].rolling(3).mean()

这取列“数据”的3个周期的移动平均值(MA)。你也可以计算移位的版本,例如排除当前单元格的版本(向后移位一个)可以很容易地计算为:

df['data'].shift(periods=1).rolling(3).mean()

我觉得使用瓶颈可以很好地解决这个问题

参见下面的基本示例:

import numpy as np
import bottleneck as bn

a = np.random.randint(4, 1000, size=100)
mm = bn.move_mean(a, window=5, min_count=1)

“mm”是“a”的移动平均值。 “窗口”是考虑移动均值的最大条目数。 "min_count"是考虑移动平均值的最小条目数(例如,对于前几个元素或如果数组有nan值)。

好在瓶颈有助于处理nan值,而且非常高效。

移动平均过滤器怎么样?它也是一个单行程序,它的优点是,如果你需要矩形以外的东西,你可以很容易地操作窗口类型。一个n长的简单移动平均数组a:

lfilter(np.ones(N)/N, [1], a)[N:]

应用三角形窗口后:

lfilter(np.ones(N)*scipy.signal.triang(N)/N, [1], a)[N:]

注:我通常会在最后丢弃前N个样本作为假的,因此[N:],但这是没有必要的,只是个人选择的问题。