Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

比起numpy或scipy,我建议熊猫们更快地做到这一点:

df['data'].rolling(3).mean()

这取列“数据”的3个周期的移动平均值(MA)。你也可以计算移位的版本,例如排除当前单元格的版本(向后移位一个)可以很容易地计算为:

df['data'].shift(periods=1).rolling(3).mean()

其他回答

使用@Aikude的变量,我编写了一行程序。

import numpy as np

mylist = [1, 2, 3, 4, 5, 6, 7]
N = 3

mean = [np.mean(mylist[x:x+N]) for x in range(len(mylist)-N+1)]
print(mean)

>>> [2.0, 3.0, 4.0, 5.0, 6.0]

Python标准库解决方案

这个生成器函数接受一个可迭代对象和一个窗口大小为N的值,并生成窗口内当前值的平均值。它使用了deque,这是一种类似于列表的数据结构,但针对在两端进行快速修改(弹出、追加)进行了优化。

from collections import deque
from itertools import islice

def sliding_avg(iterable, N):        
    it = iter(iterable)
    window = deque(islice(it, N))        
    num_vals = len(window)

    if num_vals < N:
        msg = 'window size {} exceeds total number of values {}'
        raise ValueError(msg.format(N, num_vals))

    N = float(N) # force floating point division if using Python 2
    s = sum(window)
    
    while True:
        yield s/N
        try:
            nxt = next(it)
        except StopIteration:
            break
        s = s - window.popleft() + nxt
        window.append(nxt)
        

下面是函数的运行情况:

>>> values = range(100)
>>> N = 5
>>> window_avg = sliding_avg(values, N)
>>> 
>>> next(window_avg) # (0 + 1 + 2 + 3 + 4)/5
>>> 2.0
>>> next(window_avg) # (1 + 2 + 3 + 4 + 5)/5
>>> 3.0
>>> next(window_avg) # (2 + 3 + 4 + 5 + 6)/5
>>> 4.0

上面的一个答案中有一个mab的注释,它有这个方法。瓶颈有move_mean,这是一个简单的移动平均:

import numpy as np
import bottleneck as bn

a = np.arange(10) + np.random.random(10)

mva = bn.move_mean(a, window=2, min_count=1)

Min_count是一个很方便的参数,它可以取数组中该点的移动平均值。如果你不设置min_count,它将等于window,并且直到window points的所有内容都将是nan。

上面有很多关于计算运行平均值的答案。我的回答增加了两个额外的特征:

忽略nan值 计算N个相邻值的平均值,不包括兴趣值本身

这第二个特征对于确定哪些值与总体趋势有一定的差异特别有用。

我使用numpy。cumsum,因为这是最省时的方法(参见上面Alleo的回答)。

N=10 # number of points to test on each side of point of interest, best if even
padded_x = np.insert(np.insert( np.insert(x, len(x), np.empty(int(N/2))*np.nan), 0, np.empty(int(N/2))*np.nan ),0,0)
n_nan = np.cumsum(np.isnan(padded_x))
cumsum = np.nancumsum(padded_x) 
window_sum = cumsum[N+1:] - cumsum[:-(N+1)] - x # subtract value of interest from sum of all values within window
window_n_nan = n_nan[N+1:] - n_nan[:-(N+1)] - np.isnan(x)
window_n_values = (N - window_n_nan)
movavg = (window_sum) / (window_n_values)

这段代码只适用于偶数n。它可以通过改变np来调整奇数。插入padded_x和n_nan。

输出示例(黑色为raw,蓝色为movavg):

这段代码可以很容易地修改,以删除从小于cutoff = 3的非nan值计算的所有移动平均值。

window_n_values = (N - window_n_nan).astype(float) # dtype must be float to set some values to nan
cutoff = 3
window_n_values[window_n_values<cutoff] = np.nan
movavg = (window_sum) / (window_n_values)

另一个解决方案是使用标准库和deque:

from collections import deque
import itertools

def moving_average(iterable, n=3):
    # http://en.wikipedia.org/wiki/Moving_average
    it = iter(iterable) 
    # create an iterable object from input argument
    d = deque(itertools.islice(it, n-1))  
    # create deque object by slicing iterable
    d.appendleft(0)
    s = sum(d)
    for elem in it:
        s += elem - d.popleft()
        d.append(elem)
        yield s / n

# example on how to use it
for i in  moving_average([40, 30, 50, 46, 39, 44]):
    print(i)

# 40.0
# 42.0
# 45.0
# 43.0