Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?
当前回答
比起numpy或scipy,我建议熊猫们更快地做到这一点:
df['data'].rolling(3).mean()
这取列“数据”的3个周期的移动平均值(MA)。你也可以计算移位的版本,例如排除当前单元格的版本(向后移位一个)可以很容易地计算为:
df['data'].shift(periods=1).rolling(3).mean()
其他回答
上面的一个答案中有一个mab的注释,它有这个方法。瓶颈有move_mean,这是一个简单的移动平均:
import numpy as np
import bottleneck as bn
a = np.arange(10) + np.random.random(10)
mva = bn.move_mean(a, window=2, min_count=1)
Min_count是一个很方便的参数,它可以取数组中该点的移动平均值。如果你不设置min_count,它将等于window,并且直到window points的所有内容都将是nan。
有关现成的解决方案,请参见https://scipy-cookbook.readthedocs.io/items/SignalSmooth.html。 它提供了平窗类型的运行平均值。请注意,这比简单的do-it-yourself卷积方法要复杂一些,因为它试图通过反射数据来处理数据开头和结尾的问题(在您的情况下可能有效,也可能无效……)。
首先,你可以试着:
a = np.random.random(100)
plt.plot(a)
b = smooth(a, window='flat')
plt.plot(b)
移动平均过滤器怎么样?它也是一个单行程序,它的优点是,如果你需要矩形以外的东西,你可以很容易地操作窗口类型。一个n长的简单移动平均数组a:
lfilter(np.ones(N)/N, [1], a)[N:]
应用三角形窗口后:
lfilter(np.ones(N)*scipy.signal.triang(N)/N, [1], a)[N:]
注:我通常会在最后丢弃前N个样本作为假的,因此[N:],但这是没有必要的,只是个人选择的问题。
更新:下面的例子展示了老熊猫。Rolling_mean函数,该函数在最近版本的pandas中已被删除。该函数调用的现代等价函数将使用pandas.Series.rolling:
In [8]: pd.Series(x).rolling(window=N).mean().iloc[N-1:].values
Out[8]:
array([ 0.49815397, 0.49844183, 0.49840518, ..., 0.49488191,
0.49456679, 0.49427121])
pandas比NumPy或SciPy更适合这一点。它的函数rolling_mean很方便地完成了这项工作。当输入是一个数组时,它还返回一个NumPy数组。
使用任何定制的纯Python实现都很难在性能上击败rolling_mean。下面是针对两个提议的解决方案的性能示例:
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: def running_mean(x, N):
...: cumsum = np.cumsum(np.insert(x, 0, 0))
...: return (cumsum[N:] - cumsum[:-N]) / N
...:
In [4]: x = np.random.random(100000)
In [5]: N = 1000
In [6]: %timeit np.convolve(x, np.ones((N,))/N, mode='valid')
10 loops, best of 3: 172 ms per loop
In [7]: %timeit running_mean(x, N)
100 loops, best of 3: 6.72 ms per loop
In [8]: %timeit pd.rolling_mean(x, N)[N-1:]
100 loops, best of 3: 4.74 ms per loop
In [9]: np.allclose(pd.rolling_mean(x, N)[N-1:], running_mean(x, N))
Out[9]: True
关于如何处理边缘值,也有很好的选项。
对于一个简短、快速的解决方案,在一个循环中完成所有事情,没有依赖关系,下面的代码工作得很好。
mylist = [1, 2, 3, 4, 5, 6, 7]
N = 3
cumsum, moving_aves = [0], []
for i, x in enumerate(mylist, 1):
cumsum.append(cumsum[i-1] + x)
if i>=N:
moving_ave = (cumsum[i] - cumsum[i-N])/N
#can do stuff with moving_ave here
moving_aves.append(moving_ave)