Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

这个问题现在甚至比NeXuS上个月写的时候更古老,但我喜欢他的代码处理边缘情况的方式。然而,因为它是一个“简单移动平均”,它的结果滞后于它们应用的数据。我认为,通过对基于卷积()的方法应用类似的方法,可以以比NumPy的模式valid、same和full更令人满意的方式处理边缘情况。

我的贡献使用了一个中央运行平均值,以使其结果与他们的数据相一致。当可供使用的全尺寸窗口的点太少时,将从数组边缘的连续较小窗口计算运行平均值。[实际上,从连续较大的窗口,但这是一个实现细节。]

import numpy as np

def running_mean(l, N):
    # Also works for the(strictly invalid) cases when N is even.
    if (N//2)*2 == N:
        N = N - 1
    front = np.zeros(N//2)
    back = np.zeros(N//2)

    for i in range(1, (N//2)*2, 2):
        front[i//2] = np.convolve(l[:i], np.ones((i,))/i, mode = 'valid')
    for i in range(1, (N//2)*2, 2):
        back[i//2] = np.convolve(l[-i:], np.ones((i,))/i, mode = 'valid')
    return np.concatenate([front, np.convolve(l, np.ones((N,))/N, mode = 'valid'), back[::-1]])

它相对较慢,因为它使用了卷积(),并且可能会被真正的Pythonista修饰很多,但是,我相信这个想法是成立的。

其他回答

或用于python计算的模块

在我在Tradewave.net的测试中,TA-lib总是赢:

import talib as ta
import numpy as np
import pandas as pd
import scipy
from scipy import signal
import time as t

PAIR = info.primary_pair
PERIOD = 30

def initialize():
    storage.reset()
    storage.elapsed = storage.get('elapsed', [0,0,0,0,0,0])

def cumsum_sma(array, period):
    ret = np.cumsum(array, dtype=float)
    ret[period:] = ret[period:] - ret[:-period]
    return ret[period - 1:] / period

def pandas_sma(array, period):
    return pd.rolling_mean(array, period)

def api_sma(array, period):
    # this method is native to Tradewave and does NOT return an array
    return (data[PAIR].ma(PERIOD))

def talib_sma(array, period):
    return ta.MA(array, period)

def convolve_sma(array, period):
    return np.convolve(array, np.ones((period,))/period, mode='valid')

def fftconvolve_sma(array, period):    
    return scipy.signal.fftconvolve(
        array, np.ones((period,))/period, mode='valid')    

def tick():

    close = data[PAIR].warmup_period('close')

    t1 = t.time()
    sma_api = api_sma(close, PERIOD)
    t2 = t.time()
    sma_cumsum = cumsum_sma(close, PERIOD)
    t3 = t.time()
    sma_pandas = pandas_sma(close, PERIOD)
    t4 = t.time()
    sma_talib = talib_sma(close, PERIOD)
    t5 = t.time()
    sma_convolve = convolve_sma(close, PERIOD)
    t6 = t.time()
    sma_fftconvolve = fftconvolve_sma(close, PERIOD)
    t7 = t.time()

    storage.elapsed[-1] = storage.elapsed[-1] + t2-t1
    storage.elapsed[-2] = storage.elapsed[-2] + t3-t2
    storage.elapsed[-3] = storage.elapsed[-3] + t4-t3
    storage.elapsed[-4] = storage.elapsed[-4] + t5-t4
    storage.elapsed[-5] = storage.elapsed[-5] + t6-t5    
    storage.elapsed[-6] = storage.elapsed[-6] + t7-t6        

    plot('sma_api', sma_api)  
    plot('sma_cumsum', sma_cumsum[-5])
    plot('sma_pandas', sma_pandas[-10])
    plot('sma_talib', sma_talib[-15])
    plot('sma_convolve', sma_convolve[-20])    
    plot('sma_fftconvolve', sma_fftconvolve[-25])

def stop():

    log('ticks....: %s' % info.max_ticks)

    log('api......: %.5f' % storage.elapsed[-1])
    log('cumsum...: %.5f' % storage.elapsed[-2])
    log('pandas...: %.5f' % storage.elapsed[-3])
    log('talib....: %.5f' % storage.elapsed[-4])
    log('convolve.: %.5f' % storage.elapsed[-5])    
    log('fft......: %.5f' % storage.elapsed[-6])

结果:

[2015-01-31 23:00:00] ticks....: 744
[2015-01-31 23:00:00] api......: 0.16445
[2015-01-31 23:00:00] cumsum...: 0.03189
[2015-01-31 23:00:00] pandas...: 0.03677
[2015-01-31 23:00:00] talib....: 0.00700  # <<< Winner!
[2015-01-31 23:00:00] convolve.: 0.04871
[2015-01-31 23:00:00] fft......: 0.22306

一个新的卷积配方被合并到Python 3.10中。

鉴于


import collections, operator

from itertools import chain, repeat


size = 3 + 1
kernel = [1/size] * size                                              

Code

def convolve(signal, kernel):
    # See:  https://betterexplained.com/articles/intuitive-convolution/
    # convolve(data, [0.25, 0.25, 0.25, 0.25]) --> Moving average (blur)
    # convolve(data, [1, -1]) --> 1st finite difference (1st derivative)
    # convolve(data, [1, -2, 1]) --> 2nd finite difference (2nd derivative)
    kernel = list(reversed(kernel))
    n = len(kernel)
    window = collections.deque([0] * n, maxlen=n)
    for x in chain(signal, repeat(0, n-1)):
        window.append(x)
        yield sum(map(operator.mul, kernel, window))

Demo

list(convolve(range(1, 6), kernel))
# [0.25, 0.75, 1.5, 2.5, 3.5, 3.0, 2.25, 1.25]

细节

卷积是一种可以应用于移动平均的一般数学运算。其思想是,给定一些数据,您将数据子集(窗口)作为“掩码”或“内核”在数据中滑动,在每个窗口上执行特定的数学操作。在移动平均的情况下,核是平均值:

现在可以通过more_itertools.convolve使用这个实现。 More_itertools是一个流行的第三方包;通过> PIP Install more_itertools安装。

如果你选择自己生成,而不是使用现有的库,请注意浮点错误并尽量减少其影响:

class SumAccumulator:
    def __init__(self):
        self.values = [0]
        self.count = 0

    def add( self, val ):
        self.values.append( val )
        self.count = self.count + 1
        i = self.count
        while i & 0x01:
            i = i >> 1
            v0 = self.values.pop()
            v1 = self.values.pop()
            self.values.append( v0 + v1 )

    def get_total(self):
        return sum( reversed(self.values) )

    def get_size( self ):
        return self.count

如果所有的值都是大致相同的数量级,那么这将通过始终添加大致相似的数量级值来帮助保持精度。

有点晚了,但我已经做了我自己的小函数,它不环绕端点或垫与零,然后用于查找平均值。进一步的处理是,它还在线性间隔点上对信号进行重新采样。随意定制代码以获得其他特性。

该方法是一个简单的矩阵乘法与规范化高斯核。

def running_mean(y_in, x_in, N_out=101, sigma=1):
    '''
    Returns running mean as a Bell-curve weighted average at evenly spaced
    points. Does NOT wrap signal around, or pad with zeros.
    
    Arguments:
    y_in -- y values, the values to be smoothed and re-sampled
    x_in -- x values for array
    
    Keyword arguments:
    N_out -- NoOf elements in resampled array.
    sigma -- 'Width' of Bell-curve in units of param x .
    '''
    import numpy as np
    N_in = len(y_in)

    # Gaussian kernel
    x_out = np.linspace(np.min(x_in), np.max(x_in), N_out)
    x_in_mesh, x_out_mesh = np.meshgrid(x_in, x_out)
    gauss_kernel = np.exp(-np.square(x_in_mesh - x_out_mesh) / (2 * sigma**2))
    # Normalize kernel, such that the sum is one along axis 1
    normalization = np.tile(np.reshape(np.sum(gauss_kernel, axis=1), (N_out, 1)), (1, N_in))
    gauss_kernel_normalized = gauss_kernel / normalization
    # Perform running average as a linear operation
    y_out = gauss_kernel_normalized @ y_in

    return y_out, x_out

正弦信号加正态分布噪声的一个简单用法:

比起numpy或scipy,我建议熊猫们更快地做到这一点:

df['data'].rolling(3).mean()

这取列“数据”的3个周期的移动平均值(MA)。你也可以计算移位的版本,例如排除当前单元格的版本(向后移位一个)可以很容易地计算为:

df['data'].shift(periods=1).rolling(3).mean()