Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

这个问题现在甚至比NeXuS上个月写的时候更古老,但我喜欢他的代码处理边缘情况的方式。然而,因为它是一个“简单移动平均”,它的结果滞后于它们应用的数据。我认为,通过对基于卷积()的方法应用类似的方法,可以以比NumPy的模式valid、same和full更令人满意的方式处理边缘情况。

我的贡献使用了一个中央运行平均值,以使其结果与他们的数据相一致。当可供使用的全尺寸窗口的点太少时,将从数组边缘的连续较小窗口计算运行平均值。[实际上,从连续较大的窗口,但这是一个实现细节。]

import numpy as np

def running_mean(l, N):
    # Also works for the(strictly invalid) cases when N is even.
    if (N//2)*2 == N:
        N = N - 1
    front = np.zeros(N//2)
    back = np.zeros(N//2)

    for i in range(1, (N//2)*2, 2):
        front[i//2] = np.convolve(l[:i], np.ones((i,))/i, mode = 'valid')
    for i in range(1, (N//2)*2, 2):
        back[i//2] = np.convolve(l[-i:], np.ones((i,))/i, mode = 'valid')
    return np.concatenate([front, np.convolve(l, np.ones((N,))/N, mode = 'valid'), back[::-1]])

它相对较慢,因为它使用了卷积(),并且可能会被真正的Pythonista修饰很多,但是,我相信这个想法是成立的。

其他回答

我还没有检查这有多快,但你可以试试:

from collections import deque

cache = deque() # keep track of seen values
n = 10          # window size
A = xrange(100) # some dummy iterable
cum_sum = 0     # initialize cumulative sum

for t, val in enumerate(A, 1):
    cache.append(val)
    cum_sum += val
    if t < n:
        avg = cum_sum / float(t)
    else:                           # if window is saturated,
        cum_sum -= cache.popleft()  # subtract oldest value
        avg = cum_sum / float(n)

使用@Aikude的变量,我编写了一行程序。

import numpy as np

mylist = [1, 2, 3, 4, 5, 6, 7]
N = 3

mean = [np.mean(mylist[x:x+N]) for x in range(len(mylist)-N+1)]
print(mean)

>>> [2.0, 3.0, 4.0, 5.0, 6.0]

仅使用Python标准库(内存高效)

只提供标准库deque的另一个版本。令我惊讶的是,大多数答案都使用pandas或numpy。

def moving_average(iterable, n=3):
    d = deque(maxlen=n)
    for i in iterable:
        d.append(i)
        if len(d) == n:
            yield sum(d)/n

r = moving_average([40, 30, 50, 46, 39, 44])
assert list(r) == [40.0, 42.0, 45.0, 43.0]

实际上,我在python文档中找到了另一个实现

def moving_average(iterable, n=3):
    # moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
    # http://en.wikipedia.org/wiki/Moving_average
    it = iter(iterable)
    d = deque(itertools.islice(it, n-1))
    d.appendleft(0)
    s = sum(d)
    for elem in it:
        s += elem - d.popleft()
        d.append(elem)
        yield s / n

然而,在我看来,实现似乎比它应该的要复杂一些。但它肯定在标准python文档中是有原因的,有人能评论一下我的实现和标准文档吗?

上面有很多关于计算运行平均值的答案。我的回答增加了两个额外的特征:

忽略nan值 计算N个相邻值的平均值,不包括兴趣值本身

这第二个特征对于确定哪些值与总体趋势有一定的差异特别有用。

我使用numpy。cumsum,因为这是最省时的方法(参见上面Alleo的回答)。

N=10 # number of points to test on each side of point of interest, best if even
padded_x = np.insert(np.insert( np.insert(x, len(x), np.empty(int(N/2))*np.nan), 0, np.empty(int(N/2))*np.nan ),0,0)
n_nan = np.cumsum(np.isnan(padded_x))
cumsum = np.nancumsum(padded_x) 
window_sum = cumsum[N+1:] - cumsum[:-(N+1)] - x # subtract value of interest from sum of all values within window
window_n_nan = n_nan[N+1:] - n_nan[:-(N+1)] - np.isnan(x)
window_n_values = (N - window_n_nan)
movavg = (window_sum) / (window_n_values)

这段代码只适用于偶数n。它可以通过改变np来调整奇数。插入padded_x和n_nan。

输出示例(黑色为raw,蓝色为movavg):

这段代码可以很容易地修改,以删除从小于cutoff = 3的非nan值计算的所有移动平均值。

window_n_values = (N - window_n_nan).astype(float) # dtype must be float to set some values to nan
cutoff = 3
window_n_values[window_n_values<cutoff] = np.nan
movavg = (window_sum) / (window_n_values)

你可以使用scipy. nmage .uniform_filter1d:

import numpy as np
from scipy.ndimage import uniform_filter1d
N = 1000
x = np.random.random(100000)
y = uniform_filter1d(x, size=N)

uniform_filter1d:

给出具有相同numpy形状的输出(即点数) 允许多种方式处理边界,其中'reflect'是默认的,但在我的情况下,我更想要'nearest'

它也相当快(比np快近50倍)。卷积,比上述cumsum方法快2-5倍):

%timeit y1 = np.convolve(x, np.ones((N,))/N, mode='same')
100 loops, best of 3: 9.28 ms per loop

%timeit y2 = uniform_filter1d(x, size=N)
10000 loops, best of 3: 191 µs per loop

这里有3个函数可以让你比较不同实现的错误/速度:

from __future__ import division
import numpy as np
import scipy.ndimage as ndi
def running_mean_convolve(x, N):
    return np.convolve(x, np.ones(N) / float(N), 'valid')
def running_mean_cumsum(x, N):
    cumsum = np.cumsum(np.insert(x, 0, 0))
    return (cumsum[N:] - cumsum[:-N]) / float(N)
def running_mean_uniform_filter1d(x, N):
    return ndi.uniform_filter1d(x, N, mode='constant', origin=-(N//2))[:-(N-1)]