Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

我觉得使用瓶颈可以很好地解决这个问题

参见下面的基本示例:

import numpy as np
import bottleneck as bn

a = np.random.randint(4, 1000, size=100)
mm = bn.move_mean(a, window=5, min_count=1)

“mm”是“a”的移动平均值。 “窗口”是考虑移动均值的最大条目数。 "min_count"是考虑移动平均值的最小条目数(例如,对于前几个元素或如果数组有nan值)。

好在瓶颈有助于处理nan值,而且非常高效。

其他回答

有点晚了,但我已经做了我自己的小函数,它不环绕端点或垫与零,然后用于查找平均值。进一步的处理是,它还在线性间隔点上对信号进行重新采样。随意定制代码以获得其他特性。

该方法是一个简单的矩阵乘法与规范化高斯核。

def running_mean(y_in, x_in, N_out=101, sigma=1):
    '''
    Returns running mean as a Bell-curve weighted average at evenly spaced
    points. Does NOT wrap signal around, or pad with zeros.
    
    Arguments:
    y_in -- y values, the values to be smoothed and re-sampled
    x_in -- x values for array
    
    Keyword arguments:
    N_out -- NoOf elements in resampled array.
    sigma -- 'Width' of Bell-curve in units of param x .
    '''
    import numpy as np
    N_in = len(y_in)

    # Gaussian kernel
    x_out = np.linspace(np.min(x_in), np.max(x_in), N_out)
    x_in_mesh, x_out_mesh = np.meshgrid(x_in, x_out)
    gauss_kernel = np.exp(-np.square(x_in_mesh - x_out_mesh) / (2 * sigma**2))
    # Normalize kernel, such that the sum is one along axis 1
    normalization = np.tile(np.reshape(np.sum(gauss_kernel, axis=1), (N_out, 1)), (1, N_in))
    gauss_kernel_normalized = gauss_kernel / normalization
    # Perform running average as a linear operation
    y_out = gauss_kernel_normalized @ y_in

    return y_out, x_out

正弦信号加正态分布噪声的一个简单用法:

出于教学目的,让我再添加两个Numpy解决方案(比cumsum解决方案慢):

import numpy as np
from numpy.lib.stride_tricks import as_strided

def ra_strides(arr, window):
    ''' Running average using as_strided'''
    n = arr.shape[0] - window + 1
    arr_strided = as_strided(arr, shape=[n, window], strides=2*arr.strides)
    return arr_strided.mean(axis=1)

def ra_add(arr, window):
    ''' Running average using add.reduceat'''
    n = arr.shape[0] - window + 1
    indices = np.array([0, window]*n) + np.repeat(np.arange(n), 2)
    arr = np.append(arr, 0)
    return np.add.reduceat(arr, indices )[::2]/window

使用的函数:as_strided, add.reduceat

我知道这是一个老问题,但这里有一个解决方案,它不使用任何额外的数据结构或库。它在输入列表的元素数量上是线性的,我想不出任何其他方法来使它更有效(实际上,如果有人知道更好的分配结果的方法,请告诉我)。

注意:使用numpy数组而不是列表会快得多,但我想消除所有依赖关系。通过多线程执行也可以提高性能

该函数假设输入列表是一维的,所以要小心。

### Running mean/Moving average
def running_mean(l, N):
    sum = 0
    result = list( 0 for x in l)

    for i in range( 0, N ):
        sum = sum + l[i]
        result[i] = sum / (i+1)

    for i in range( N, len(l) ):
        sum = sum - l[i-N] + l[i]
        result[i] = sum / N

    return result

例子

假设我们有一个列表data =[1,2,3,4,5,6],我们想在它上面计算周期为3的滚动平均值,并且你还想要一个与输入列表相同大小的输出列表(这是最常见的情况)。

第一个元素的索引为0,因此滚动平均值应该在索引为-2、-1和0的元素上计算。显然,我们没有data[-2]和data[-1](除非您想使用特殊的边界条件),因此我们假设这些元素为0。这相当于对列表进行零填充,除了我们实际上不填充它,只是跟踪需要填充的索引(从0到N-1)。

所以,对于前N个元素,我们只是在累加器中不断地把元素加起来。

result[0] = (0 + 0 + 1) / 3  = 0.333    ==   (sum + 1) / 3
result[1] = (0 + 1 + 2) / 3  = 1        ==   (sum + 2) / 3
result[2] = (1 + 2 + 3) / 3  = 2        ==   (sum + 3) / 3

从元素N+1开始,简单的累加是行不通的。我们期望的结果是[3]=(2 + 3 + 4)/3 = 3,但这与(sum + 4)/3 = 3.333不同。

计算正确值的方法是用sum+4减去数据[0]= 1,从而得到sum+4 - 1 = 9。

这是因为目前sum =数据[0]+数据[1]+数据[2],但对于每个i >= N也是如此,因为在减法之前,sum是数据[i-N] +…+ data[i-2] + data[i-1]。

你可以用以下方法计算运行平均值:

import numpy as np

def runningMean(x, N):
    y = np.zeros((len(x),))
    for ctr in range(len(x)):
         y[ctr] = np.sum(x[ctr:(ctr+N)])
    return y/N

但是速度很慢。

幸运的是,numpy包含一个卷积函数,我们可以用它来加快速度。运行均值相当于将x与一个长度为N的向量进行卷积,其中所有元素都等于1/N。卷积的numpy实现包括起始瞬态,所以你必须删除前N-1点:

def runningMeanFast(x, N):
    return np.convolve(x, np.ones((N,))/N)[(N-1):]

在我的机器上,快速版本要快20-30倍,这取决于输入向量的长度和平均窗口的大小。

请注意,卷积确实包括一个“相同”模式,它似乎应该解决开始的瞬态问题,但它在开始和结束之间分割。

上述所有的解决方案都很差,因为它们缺乏

由于本机python而不是numpy向量化实现, 数值稳定性,由于numpy使用不当。cumsum或 由于O(len(x) * w)实现为卷积的速度。

鉴于

import numpy
m = 10000
x = numpy.random.rand(m)
w = 1000

注意x_[:w].sum()等于x[:w-1].sum()。因此,对于第一个平均值,numpy.cumsum(…)加上x[w] / w(通过x_[w+1] / w),并减去0(从x_[0] / w)。结果是x[0:w].mean()

通过cumsum,您将通过添加x[w+1] / w并减去x[0] / w来更新第二个平均值,从而得到x[1:w+1].mean()。

这将一直进行,直到到达x[-w:].mean()。

x_ = numpy.insert(x, 0, 0)
sliding_average = x_[:w].sum() / w + numpy.cumsum(x_[w:] - x_[:-w]) / w

这个解是向量化的,O(m),可读且数值稳定。