Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

上面有很多关于计算运行平均值的答案。我的回答增加了两个额外的特征:

忽略nan值 计算N个相邻值的平均值,不包括兴趣值本身

这第二个特征对于确定哪些值与总体趋势有一定的差异特别有用。

我使用numpy。cumsum,因为这是最省时的方法(参见上面Alleo的回答)。

N=10 # number of points to test on each side of point of interest, best if even
padded_x = np.insert(np.insert( np.insert(x, len(x), np.empty(int(N/2))*np.nan), 0, np.empty(int(N/2))*np.nan ),0,0)
n_nan = np.cumsum(np.isnan(padded_x))
cumsum = np.nancumsum(padded_x) 
window_sum = cumsum[N+1:] - cumsum[:-(N+1)] - x # subtract value of interest from sum of all values within window
window_n_nan = n_nan[N+1:] - n_nan[:-(N+1)] - np.isnan(x)
window_n_values = (N - window_n_nan)
movavg = (window_sum) / (window_n_values)

这段代码只适用于偶数n。它可以通过改变np来调整奇数。插入padded_x和n_nan。

输出示例(黑色为raw,蓝色为movavg):

这段代码可以很容易地修改,以删除从小于cutoff = 3的非nan值计算的所有移动平均值。

window_n_values = (N - window_n_nan).astype(float) # dtype must be float to set some values to nan
cutoff = 3
window_n_values[window_n_values<cutoff] = np.nan
movavg = (window_sum) / (window_n_values)

其他回答

有关现成的解决方案,请参见https://scipy-cookbook.readthedocs.io/items/SignalSmooth.html。 它提供了平窗类型的运行平均值。请注意,这比简单的do-it-yourself卷积方法要复杂一些,因为它试图通过反射数据来处理数据开头和结尾的问题(在您的情况下可能有效,也可能无效……)。

首先,你可以试着:

a = np.random.random(100)
plt.plot(a)
b = smooth(a, window='flat')
plt.plot(b)

仅使用Python标准库(内存高效)

只提供标准库deque的另一个版本。令我惊讶的是,大多数答案都使用pandas或numpy。

def moving_average(iterable, n=3):
    d = deque(maxlen=n)
    for i in iterable:
        d.append(i)
        if len(d) == n:
            yield sum(d)/n

r = moving_average([40, 30, 50, 46, 39, 44])
assert list(r) == [40.0, 42.0, 45.0, 43.0]

实际上,我在python文档中找到了另一个实现

def moving_average(iterable, n=3):
    # moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
    # http://en.wikipedia.org/wiki/Moving_average
    it = iter(iterable)
    d = deque(itertools.islice(it, n-1))
    d.appendleft(0)
    s = sum(d)
    for elem in it:
        s += elem - d.popleft()
        d.append(elem)
        yield s / n

然而,在我看来,实现似乎比它应该的要复杂一些。但它肯定在标准python文档中是有原因的,有人能评论一下我的实现和标准文档吗?

我还没有检查这有多快,但你可以试试:

from collections import deque

cache = deque() # keep track of seen values
n = 10          # window size
A = xrange(100) # some dummy iterable
cum_sum = 0     # initialize cumulative sum

for t, val in enumerate(A, 1):
    cache.append(val)
    cum_sum += val
    if t < n:
        avg = cum_sum / float(t)
    else:                           # if window is saturated,
        cum_sum -= cache.popleft()  # subtract oldest value
        avg = cum_sum / float(n)

这个问题现在甚至比NeXuS上个月写的时候更古老,但我喜欢他的代码处理边缘情况的方式。然而,因为它是一个“简单移动平均”,它的结果滞后于它们应用的数据。我认为,通过对基于卷积()的方法应用类似的方法,可以以比NumPy的模式valid、same和full更令人满意的方式处理边缘情况。

我的贡献使用了一个中央运行平均值,以使其结果与他们的数据相一致。当可供使用的全尺寸窗口的点太少时,将从数组边缘的连续较小窗口计算运行平均值。[实际上,从连续较大的窗口,但这是一个实现细节。]

import numpy as np

def running_mean(l, N):
    # Also works for the(strictly invalid) cases when N is even.
    if (N//2)*2 == N:
        N = N - 1
    front = np.zeros(N//2)
    back = np.zeros(N//2)

    for i in range(1, (N//2)*2, 2):
        front[i//2] = np.convolve(l[:i], np.ones((i,))/i, mode = 'valid')
    for i in range(1, (N//2)*2, 2):
        back[i//2] = np.convolve(l[-i:], np.ones((i,))/i, mode = 'valid')
    return np.concatenate([front, np.convolve(l, np.ones((N,))/N, mode = 'valid'), back[::-1]])

它相对较慢,因为它使用了卷积(),并且可能会被真正的Pythonista修饰很多,但是,我相信这个想法是成立的。

如果你必须为非常小的数组(少于200个元素)重复这样做,我发现只用线性代数就能得到最快的结果。 最慢的部分是建立你的乘法矩阵y,你只需要做一次,但之后可能会更快。

import numpy as np
import random 

N = 100      # window size
size =200     # array length

x = np.random.random(size)
y = np.eye(size, dtype=float)

# prepare matrix
for i in range(size):
  y[i,i:i+N] = 1./N
  
# calculate running mean
z = np.inner(x,y.T)[N-1:]