Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

或用于python计算的模块

在我在Tradewave.net的测试中,TA-lib总是赢:

import talib as ta
import numpy as np
import pandas as pd
import scipy
from scipy import signal
import time as t

PAIR = info.primary_pair
PERIOD = 30

def initialize():
    storage.reset()
    storage.elapsed = storage.get('elapsed', [0,0,0,0,0,0])

def cumsum_sma(array, period):
    ret = np.cumsum(array, dtype=float)
    ret[period:] = ret[period:] - ret[:-period]
    return ret[period - 1:] / period

def pandas_sma(array, period):
    return pd.rolling_mean(array, period)

def api_sma(array, period):
    # this method is native to Tradewave and does NOT return an array
    return (data[PAIR].ma(PERIOD))

def talib_sma(array, period):
    return ta.MA(array, period)

def convolve_sma(array, period):
    return np.convolve(array, np.ones((period,))/period, mode='valid')

def fftconvolve_sma(array, period):    
    return scipy.signal.fftconvolve(
        array, np.ones((period,))/period, mode='valid')    

def tick():

    close = data[PAIR].warmup_period('close')

    t1 = t.time()
    sma_api = api_sma(close, PERIOD)
    t2 = t.time()
    sma_cumsum = cumsum_sma(close, PERIOD)
    t3 = t.time()
    sma_pandas = pandas_sma(close, PERIOD)
    t4 = t.time()
    sma_talib = talib_sma(close, PERIOD)
    t5 = t.time()
    sma_convolve = convolve_sma(close, PERIOD)
    t6 = t.time()
    sma_fftconvolve = fftconvolve_sma(close, PERIOD)
    t7 = t.time()

    storage.elapsed[-1] = storage.elapsed[-1] + t2-t1
    storage.elapsed[-2] = storage.elapsed[-2] + t3-t2
    storage.elapsed[-3] = storage.elapsed[-3] + t4-t3
    storage.elapsed[-4] = storage.elapsed[-4] + t5-t4
    storage.elapsed[-5] = storage.elapsed[-5] + t6-t5    
    storage.elapsed[-6] = storage.elapsed[-6] + t7-t6        

    plot('sma_api', sma_api)  
    plot('sma_cumsum', sma_cumsum[-5])
    plot('sma_pandas', sma_pandas[-10])
    plot('sma_talib', sma_talib[-15])
    plot('sma_convolve', sma_convolve[-20])    
    plot('sma_fftconvolve', sma_fftconvolve[-25])

def stop():

    log('ticks....: %s' % info.max_ticks)

    log('api......: %.5f' % storage.elapsed[-1])
    log('cumsum...: %.5f' % storage.elapsed[-2])
    log('pandas...: %.5f' % storage.elapsed[-3])
    log('talib....: %.5f' % storage.elapsed[-4])
    log('convolve.: %.5f' % storage.elapsed[-5])    
    log('fft......: %.5f' % storage.elapsed[-6])

结果:

[2015-01-31 23:00:00] ticks....: 744
[2015-01-31 23:00:00] api......: 0.16445
[2015-01-31 23:00:00] cumsum...: 0.03189
[2015-01-31 23:00:00] pandas...: 0.03677
[2015-01-31 23:00:00] talib....: 0.00700  # <<< Winner!
[2015-01-31 23:00:00] convolve.: 0.04871
[2015-01-31 23:00:00] fft......: 0.22306

其他回答

更新:已经提出了更有效的解决方案,scipy的uniform_filter1d可能是“标准”第三方库中最好的,还有一些更新的或专门的库可用。


你可以用np。卷积得到:

np.convolve(x, np.ones(N)/N, mode='valid')

解释

The running mean is a case of the mathematical operation of convolution. For the running mean, you slide a window along the input and compute the mean of the window's contents. For discrete 1D signals, convolution is the same thing, except instead of the mean you compute an arbitrary linear combination, i.e., multiply each element by a corresponding coefficient and add up the results. Those coefficients, one for each position in the window, are sometimes called the convolution kernel. The arithmetic mean of N values is (x_1 + x_2 + ... + x_N) / N, so the corresponding kernel is (1/N, 1/N, ..., 1/N), and that's exactly what we get by using np.ones(N)/N.

边缘

np的模态参数。Convolve指定如何处理边缘。我在这里选择有效模式,因为我认为这是大多数人期望的运行方式,但您可能有其他优先级。下面是一个图表,说明了模式之间的差异:

import numpy as np
import matplotlib.pyplot as plt
modes = ['full', 'same', 'valid']
for m in modes:
    plt.plot(np.convolve(np.ones(200), np.ones(50)/50, mode=m));
plt.axis([-10, 251, -.1, 1.1]);
plt.legend(modes, loc='lower center');
plt.show()

如果你选择自己生成,而不是使用现有的库,请注意浮点错误并尽量减少其影响:

class SumAccumulator:
    def __init__(self):
        self.values = [0]
        self.count = 0

    def add( self, val ):
        self.values.append( val )
        self.count = self.count + 1
        i = self.count
        while i & 0x01:
            i = i >> 1
            v0 = self.values.pop()
            v1 = self.values.pop()
            self.values.append( v0 + v1 )

    def get_total(self):
        return sum( reversed(self.values) )

    def get_size( self ):
        return self.count

如果所有的值都是大致相同的数量级,那么这将通过始终添加大致相似的数量级值来帮助保持精度。

你可以用以下方法计算运行平均值:

import numpy as np

def runningMean(x, N):
    y = np.zeros((len(x),))
    for ctr in range(len(x)):
         y[ctr] = np.sum(x[ctr:(ctr+N)])
    return y/N

但是速度很慢。

幸运的是,numpy包含一个卷积函数,我们可以用它来加快速度。运行均值相当于将x与一个长度为N的向量进行卷积,其中所有元素都等于1/N。卷积的numpy实现包括起始瞬态,所以你必须删除前N-1点:

def runningMeanFast(x, N):
    return np.convolve(x, np.ones((N,))/N)[(N-1):]

在我的机器上,快速版本要快20-30倍,这取决于输入向量的长度和平均窗口的大小。

请注意,卷积确实包括一个“相同”模式,它似乎应该解决开始的瞬态问题,但它在开始和结束之间分割。

从其他答案来看,我不认为这是问题所要求的,但我需要保持一个不断增长的值列表的运行平均值。

因此,如果你想保持从某个地方(站点,测量设备等)获取的值的列表和最近n个值更新的平均值,你可以使用下面的代码,这将最大限度地减少添加新元素的工作:

class Running_Average(object):
    def __init__(self, buffer_size=10):
        """
        Create a new Running_Average object.

        This object allows the efficient calculation of the average of the last
        `buffer_size` numbers added to it.

        Examples
        --------
        >>> a = Running_Average(2)
        >>> a.add(1)
        >>> a.get()
        1.0
        >>> a.add(1)  # there are two 1 in buffer
        >>> a.get()
        1.0
        >>> a.add(2)  # there's a 1 and a 2 in the buffer
        >>> a.get()
        1.5
        >>> a.add(2)
        >>> a.get()  # now there's only two 2 in the buffer
        2.0
        """
        self._buffer_size = int(buffer_size)  # make sure it's an int
        self.reset()

    def add(self, new):
        """
        Add a new number to the buffer, or replaces the oldest one there.
        """
        new = float(new)  # make sure it's a float
        n = len(self._buffer)
        if n < self.buffer_size:  # still have to had numbers to the buffer.
            self._buffer.append(new)
            if self._average != self._average:  # ~ if isNaN().
                self._average = new  # no previous numbers, so it's new.
            else:
                self._average *= n  # so it's only the sum of numbers.
                self._average += new  # add new number.
                self._average /= (n+1)  # divide by new number of numbers.
        else:  # buffer full, replace oldest value.
            old = self._buffer[self._index]  # the previous oldest number.
            self._buffer[self._index] = new  # replace with new one.
            self._index += 1  # update the index and make sure it's...
            self._index %= self.buffer_size  # ... smaller than buffer_size.
            self._average -= old/self.buffer_size  # remove old one...
            self._average += new/self.buffer_size  # ...and add new one...
            # ... weighted by the number of elements.

    def __call__(self):
        """
        Return the moving average value, for the lazy ones who don't want
        to write .get .
        """
        return self._average

    def get(self):
        """
        Return the moving average value.
        """
        return self()

    def reset(self):
        """
        Reset the moving average.

        If for some reason you don't want to just create a new one.
        """
        self._buffer = []  # could use np.empty(self.buffer_size)...
        self._index = 0  # and use this to keep track of how many numbers.
        self._average = float('nan')  # could use np.NaN .

    def get_buffer_size(self):
        """
        Return current buffer_size.
        """
        return self._buffer_size

    def set_buffer_size(self, buffer_size):
        """
        >>> a = Running_Average(10)
        >>> for i in range(15):
        ...     a.add(i)
        ...
        >>> a()
        9.5
        >>> a._buffer  # should not access this!!
        [10.0, 11.0, 12.0, 13.0, 14.0, 5.0, 6.0, 7.0, 8.0, 9.0]

        Decreasing buffer size:
        >>> a.buffer_size = 6
        >>> a._buffer  # should not access this!!
        [9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
        >>> a.buffer_size = 2
        >>> a._buffer
        [13.0, 14.0]

        Increasing buffer size:
        >>> a.buffer_size = 5
        Warning: no older data available!
        >>> a._buffer
        [13.0, 14.0]

        Keeping buffer size:
        >>> a = Running_Average(10)
        >>> for i in range(15):
        ...     a.add(i)
        ...
        >>> a()
        9.5
        >>> a._buffer  # should not access this!!
        [10.0, 11.0, 12.0, 13.0, 14.0, 5.0, 6.0, 7.0, 8.0, 9.0]
        >>> a.buffer_size = 10  # reorders buffer!
        >>> a._buffer
        [5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
        """
        buffer_size = int(buffer_size)
        # order the buffer so index is zero again:
        new_buffer = self._buffer[self._index:]
        new_buffer.extend(self._buffer[:self._index])
        self._index = 0
        if self._buffer_size < buffer_size:
            print('Warning: no older data available!')  # should use Warnings!
        else:
            diff = self._buffer_size - buffer_size
            print(diff)
            new_buffer = new_buffer[diff:]
        self._buffer_size = buffer_size
        self._buffer = new_buffer

    buffer_size = property(get_buffer_size, set_buffer_size)

你可以测试它,例如:

def graph_test(N=200):
    import matplotlib.pyplot as plt
    values = list(range(N))
    values_average_calculator = Running_Average(N/2)
    values_averages = []
    for value in values:
        values_average_calculator.add(value)
        values_averages.append(values_average_calculator())
    fig, ax = plt.subplots(1, 1)
    ax.plot(values, label='values')
    ax.plot(values_averages, label='averages')
    ax.grid()
    ax.set_xlim(0, N)
    ax.set_ylim(0, N)
    fig.show()

这使:

上面有很多关于计算运行平均值的答案。我的回答增加了两个额外的特征:

忽略nan值 计算N个相邻值的平均值,不包括兴趣值本身

这第二个特征对于确定哪些值与总体趋势有一定的差异特别有用。

我使用numpy。cumsum,因为这是最省时的方法(参见上面Alleo的回答)。

N=10 # number of points to test on each side of point of interest, best if even
padded_x = np.insert(np.insert( np.insert(x, len(x), np.empty(int(N/2))*np.nan), 0, np.empty(int(N/2))*np.nan ),0,0)
n_nan = np.cumsum(np.isnan(padded_x))
cumsum = np.nancumsum(padded_x) 
window_sum = cumsum[N+1:] - cumsum[:-(N+1)] - x # subtract value of interest from sum of all values within window
window_n_nan = n_nan[N+1:] - n_nan[:-(N+1)] - np.isnan(x)
window_n_values = (N - window_n_nan)
movavg = (window_sum) / (window_n_values)

这段代码只适用于偶数n。它可以通过改变np来调整奇数。插入padded_x和n_nan。

输出示例(黑色为raw,蓝色为movavg):

这段代码可以很容易地修改,以删除从小于cutoff = 3的非nan值计算的所有移动平均值。

window_n_values = (N - window_n_nan).astype(float) # dtype must be float to set some values to nan
cutoff = 3
window_n_values[window_n_values<cutoff] = np.nan
movavg = (window_sum) / (window_n_values)