Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?
当前回答
虽然这里有这个问题的解决方案,但请看看我的解决方案。这是非常简单和工作良好。
import numpy as np
dataset = np.asarray([1, 2, 3, 4, 5, 6, 7])
ma = list()
window = 3
for t in range(0, len(dataset)):
if t+window <= len(dataset):
indices = range(t, t+window)
ma.append(np.average(np.take(dataset, indices)))
else:
ma = np.asarray(ma)
其他回答
上述所有的解决方案都很差,因为它们缺乏
由于本机python而不是numpy向量化实现, 数值稳定性,由于numpy使用不当。cumsum或 由于O(len(x) * w)实现为卷积的速度。
鉴于
import numpy
m = 10000
x = numpy.random.rand(m)
w = 1000
注意x_[:w].sum()等于x[:w-1].sum()。因此,对于第一个平均值,numpy.cumsum(…)加上x[w] / w(通过x_[w+1] / w),并减去0(从x_[0] / w)。结果是x[0:w].mean()
通过cumsum,您将通过添加x[w+1] / w并减去x[0] / w来更新第二个平均值,从而得到x[1:w+1].mean()。
这将一直进行,直到到达x[-w:].mean()。
x_ = numpy.insert(x, 0, 0)
sliding_average = x_[:w].sum() / w + numpy.cumsum(x_[w:] - x_[:-w]) / w
这个解是向量化的,O(m),可读且数值稳定。
你可以使用scipy. nmage .uniform_filter1d:
import numpy as np
from scipy.ndimage import uniform_filter1d
N = 1000
x = np.random.random(100000)
y = uniform_filter1d(x, size=N)
uniform_filter1d:
给出具有相同numpy形状的输出(即点数) 允许多种方式处理边界,其中'reflect'是默认的,但在我的情况下,我更想要'nearest'
它也相当快(比np快近50倍)。卷积,比上述cumsum方法快2-5倍):
%timeit y1 = np.convolve(x, np.ones((N,))/N, mode='same')
100 loops, best of 3: 9.28 ms per loop
%timeit y2 = uniform_filter1d(x, size=N)
10000 loops, best of 3: 191 µs per loop
这里有3个函数可以让你比较不同实现的错误/速度:
from __future__ import division
import numpy as np
import scipy.ndimage as ndi
def running_mean_convolve(x, N):
return np.convolve(x, np.ones(N) / float(N), 'valid')
def running_mean_cumsum(x, N):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / float(N)
def running_mean_uniform_filter1d(x, N):
return ndi.uniform_filter1d(x, N, mode='constant', origin=-(N//2))[:-(N-1)]
有点晚了,但我已经做了我自己的小函数,它不环绕端点或垫与零,然后用于查找平均值。进一步的处理是,它还在线性间隔点上对信号进行重新采样。随意定制代码以获得其他特性。
该方法是一个简单的矩阵乘法与规范化高斯核。
def running_mean(y_in, x_in, N_out=101, sigma=1):
'''
Returns running mean as a Bell-curve weighted average at evenly spaced
points. Does NOT wrap signal around, or pad with zeros.
Arguments:
y_in -- y values, the values to be smoothed and re-sampled
x_in -- x values for array
Keyword arguments:
N_out -- NoOf elements in resampled array.
sigma -- 'Width' of Bell-curve in units of param x .
'''
import numpy as np
N_in = len(y_in)
# Gaussian kernel
x_out = np.linspace(np.min(x_in), np.max(x_in), N_out)
x_in_mesh, x_out_mesh = np.meshgrid(x_in, x_out)
gauss_kernel = np.exp(-np.square(x_in_mesh - x_out_mesh) / (2 * sigma**2))
# Normalize kernel, such that the sum is one along axis 1
normalization = np.tile(np.reshape(np.sum(gauss_kernel, axis=1), (N_out, 1)), (1, N_in))
gauss_kernel_normalized = gauss_kernel / normalization
# Perform running average as a linear operation
y_out = gauss_kernel_normalized @ y_in
return y_out, x_out
正弦信号加正态分布噪声的一个简单用法:
另一个解决方案是使用标准库和deque:
from collections import deque
import itertools
def moving_average(iterable, n=3):
# http://en.wikipedia.org/wiki/Moving_average
it = iter(iterable)
# create an iterable object from input argument
d = deque(itertools.islice(it, n-1))
# create deque object by slicing iterable
d.appendleft(0)
s = sum(d)
for elem in it:
s += elem - d.popleft()
d.append(elem)
yield s / n
# example on how to use it
for i in moving_average([40, 30, 50, 46, 39, 44]):
print(i)
# 40.0
# 42.0
# 45.0
# 43.0
如果你选择自己生成,而不是使用现有的库,请注意浮点错误并尽量减少其影响:
class SumAccumulator:
def __init__(self):
self.values = [0]
self.count = 0
def add( self, val ):
self.values.append( val )
self.count = self.count + 1
i = self.count
while i & 0x01:
i = i >> 1
v0 = self.values.pop()
v1 = self.values.pop()
self.values.append( v0 + v1 )
def get_total(self):
return sum( reversed(self.values) )
def get_size( self ):
return self.count
如果所有的值都是大致相同的数量级,那么这将通过始终添加大致相似的数量级值来帮助保持精度。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录