我想得到的时间花在单元格执行除了原始的输出从单元格。

为此,我尝试了%%timeit -r1 -n1,但它没有公开在cell中定义的变量。

%%time适用于只包含1条语句的cell。

In[1]: %%time
       1
CPU times: user 4 µs, sys: 0 ns, total: 4 µs
Wall time: 5.96 µs
Out[1]: 1

In[2]: %%time
       # Notice there is no out result in this case.
       x = 1
       x
CPU times: user 3 µs, sys: 0 ns, total: 3 µs
Wall time: 5.96 µs

最好的方法是什么?

更新

我已经在nbeextension中使用执行时间相当长一段时间了。这是伟大的。

更新2021 - 03

到目前为止,这是正确的答案。从本质上讲,%%time和%%timeit现在都像预期的那样工作。


%time和%timeit现在成为ipython内置魔法命令的一部分


使用细胞魔法和这个项目在github由菲利普云:

通过将它放在你笔记本的顶部来加载它,或者将它放在你的配置文件中,如果你总是默认加载它:

%install_ext https://raw.github.com/cpcloud/ipython-autotime/master/autotime.py
%load_ext autotime

如果加载,后续单元格执行的每个输出都将包括执行它所花费的时间(以分钟和秒为单位)。


我发现克服这个问题的唯一方法是用print执行最后一条语句。

不要忘记单元格魔术以%%开始,行魔术以%开始。

%%time
clf = tree.DecisionTreeRegressor().fit(X_train, y_train)
res = clf.predict(X_test)
print(res)

注意,在单元格内执行的任何更改都不会在下一个单元格中被考虑,当有管道时,这是违反直觉的:


这不是很漂亮,但没有额外的软件

class timeit():
    from datetime import datetime
    def __enter__(self):
        self.tic = self.datetime.now()
    def __exit__(self, *args, **kwargs):
        print('runtime: {}'.format(self.datetime.now() - self.tic))

然后你可以像这样运行它:

with timeit():
    # your code, e.g., 
    print(sum(range(int(1e7))))

% 49999995000000
% runtime: 0:00:00.338492

当使用print(res)时,有时单元格中的格式是不同的,但jupyter/ipython带有显示。请参阅下面使用pandas的格式差异示例。

%%time
import pandas as pd 
from IPython.display import display

df = pd.DataFrame({"col0":{"a":0,"b":0}
              ,"col1":{"a":1,"b":1}
              ,"col2":{"a":2,"b":2}
             })

#compare the following
print(df)
display(df)

display语句可以保留格式。


我只是在单元格的开头添加了%%time,就得到了时间。您可以在Jupyter Spark集群/虚拟环境中使用相同的方法。只需在单元格顶部添加%%time,就会得到输出。在使用Jupyter的星火集群上,我添加到单元格的顶部,我得到如下输出

[1]  %%time
     import pandas as pd
     from pyspark.ml import Pipeline
     from pyspark.ml.classification import LogisticRegression
     import numpy as np
     .... code ....

Output :-

CPU times: user 59.8 s, sys: 4.97 s, total: 1min 4s
Wall time: 1min 18s

更简单的方法是使用jupyter_contrib_nbextensions包中的ExecuteTime插件。

pip install jupyter_contrib_nbextensions
jupyter contrib nbextension install --user
jupyter nbextension enable execute_time/ExecuteTime

你可能还想查看python的剖析魔法命令% prunit给出类似-的东西

def sum_of_lists(N):
    total = 0
    for i in range(5):
        L = [j ^ (j >> i) for j in range(N)]
        total += sum(L)
    return total

然后

%prun sum_of_lists(1000000)

将返回

14 function calls in 0.714 seconds  

Ordered by: internal time      

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    5    0.599    0.120    0.599    0.120 <ipython-input-19>:4(<listcomp>)
    5    0.064    0.013    0.064    0.013 {built-in method sum}
    1    0.036    0.036    0.699    0.699 <ipython-input-19>:1(sum_of_lists)
    1    0.014    0.014    0.714    0.714 <string>:1(<module>)
    1    0.000    0.000    0.714    0.714 {built-in method exec}

我发现它在处理大块代码时很有用。


你可以使用timeit魔法函数。

%timeit CODE_LINE

或者在单元格上

%%timeit 

SOME_CELL_CODE

查看更多IPython魔法功能,请访问https://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/notebooks/Cell%20Magics.ipynb


import time
start = time.time()
"the code you want to test stays here"
end = time.time()
print(end - start)

当遇到麻烦时,什么意味着什么:

时间还是??时间

详情如下:

Usage, in line mode:
  %timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] statement
or in cell mode:
  %%timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] setup_code
  code
  code...

Time execution of a Python statement or expression using the timeit
module.  This function can be used both as a line and cell magic:

- In line mode you can time a single-line statement (though multiple
  ones can be chained with using semicolons).

- In cell mode, the statement in the first line is used as setup code
  (executed but not timed) and the body of the cell is timed.  The cell
  body has access to any variables created in the setup code.

如果你想打印壁单元格的执行时间,这里有一个技巧, 使用

%%time
<--code goes here-->

但这里要确保,%%time是一个神奇的函数, 所以把它放在代码的第一行。

如果你把它放在代码的某行之后它就会给你 使用错误,不能工作。


这只是旧版本的一个问题。

您现在需要做的就是在单元格的顶部放置%%time。

%%time表示运行某项操作所花费的时间。它更适合报告长时间运行的操作,而不是进行低级优化。

%%timeit是一个基准测试工具,它可以反复运行语句,以给出某些语句的平均运行时间以及标准偏差。由于语句重复执行的方式,在%%timeit单元格中创建的变量在其他单元格中不可用。

%%timeit使用python timeit模块。医生说,

它避免了 用于测量执行时间的常见陷阱的数量。另见蒂姆·彼得斯 Python Cookbook中“算法”章节的介绍,由 O ' reilly。

我希望该模块仍然是相关的,因为它所引用的参考描述了诸如(1)Windows 98只更新time.time() 18.2次每秒的解决方案,以及(2)将所有语句阻塞到一行上,以避免增加行号计数器的字节码开销。


目前排名最高的答案,以及其他一些过时的答案——应该删除,因为它们现在非常具有误导性——确实有有用的评论,表明这些答案是不正确的:

即使没有打印最后一个语句,%%time也可以工作 现在将测试单元格中的变量考虑到下一个单元格中


在ipython notebook中测量单元格执行时间的最简单方法是使用ipython-autotime包。

安装包在笔记本的开始

pip install ipython-autotime

然后通过下面运行加载扩展

%load_ext autotime

一旦加载了它,在此之后运行的任何单元格都将给出该单元格的执行时间。

不要担心,如果你想关闭它,只需卸载扩展运行下面

%unload_ext autotime

这是相当简单和容易使用它,只要你想。

如果你想了解更多,可以参考ipython-autime文档或其github源代码