我想得到的时间花在单元格执行除了原始的输出从单元格。

为此,我尝试了%%timeit -r1 -n1,但它没有公开在cell中定义的变量。

%%time适用于只包含1条语句的cell。

In[1]: %%time
       1
CPU times: user 4 µs, sys: 0 ns, total: 4 µs
Wall time: 5.96 µs
Out[1]: 1

In[2]: %%time
       # Notice there is no out result in this case.
       x = 1
       x
CPU times: user 3 µs, sys: 0 ns, total: 3 µs
Wall time: 5.96 µs

最好的方法是什么?

更新

我已经在nbeextension中使用执行时间相当长一段时间了。这是伟大的。

更新2021 - 03

到目前为止,这是正确的答案。从本质上讲,%%time和%%timeit现在都像预期的那样工作。


当前回答

如果你想打印壁单元格的执行时间,这里有一个技巧, 使用

%%time
<--code goes here-->

但这里要确保,%%time是一个神奇的函数, 所以把它放在代码的第一行。

如果你把它放在代码的某行之后它就会给你 使用错误,不能工作。

其他回答

使用细胞魔法和这个项目在github由菲利普云:

通过将它放在你笔记本的顶部来加载它,或者将它放在你的配置文件中,如果你总是默认加载它:

%install_ext https://raw.github.com/cpcloud/ipython-autotime/master/autotime.py
%load_ext autotime

如果加载,后续单元格执行的每个输出都将包括执行它所花费的时间(以分钟和秒为单位)。

这不是很漂亮,但没有额外的软件

class timeit():
    from datetime import datetime
    def __enter__(self):
        self.tic = self.datetime.now()
    def __exit__(self, *args, **kwargs):
        print('runtime: {}'.format(self.datetime.now() - self.tic))

然后你可以像这样运行它:

with timeit():
    # your code, e.g., 
    print(sum(range(int(1e7))))

% 49999995000000
% runtime: 0:00:00.338492

你可能还想查看python的剖析魔法命令% prunit给出类似-的东西

def sum_of_lists(N):
    total = 0
    for i in range(5):
        L = [j ^ (j >> i) for j in range(N)]
        total += sum(L)
    return total

然后

%prun sum_of_lists(1000000)

将返回

14 function calls in 0.714 seconds  

Ordered by: internal time      

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    5    0.599    0.120    0.599    0.120 <ipython-input-19>:4(<listcomp>)
    5    0.064    0.013    0.064    0.013 {built-in method sum}
    1    0.036    0.036    0.699    0.699 <ipython-input-19>:1(sum_of_lists)
    1    0.014    0.014    0.714    0.714 <string>:1(<module>)
    1    0.000    0.000    0.714    0.714 {built-in method exec}

我发现它在处理大块代码时很有用。

我只是在单元格的开头添加了%%time,就得到了时间。您可以在Jupyter Spark集群/虚拟环境中使用相同的方法。只需在单元格顶部添加%%time,就会得到输出。在使用Jupyter的星火集群上,我添加到单元格的顶部,我得到如下输出

[1]  %%time
     import pandas as pd
     from pyspark.ml import Pipeline
     from pyspark.ml.classification import LogisticRegression
     import numpy as np
     .... code ....

Output :-

CPU times: user 59.8 s, sys: 4.97 s, total: 1min 4s
Wall time: 1min 18s

在ipython notebook中测量单元格执行时间的最简单方法是使用ipython-autotime包。

安装包在笔记本的开始

pip install ipython-autotime

然后通过下面运行加载扩展

%load_ext autotime

一旦加载了它,在此之后运行的任何单元格都将给出该单元格的执行时间。

不要担心,如果你想关闭它,只需卸载扩展运行下面

%unload_ext autotime

这是相当简单和容易使用它,只要你想。

如果你想了解更多,可以参考ipython-autime文档或其github源代码