我想得到的时间花在单元格执行除了原始的输出从单元格。

为此,我尝试了%%timeit -r1 -n1,但它没有公开在cell中定义的变量。

%%time适用于只包含1条语句的cell。

In[1]: %%time
       1
CPU times: user 4 µs, sys: 0 ns, total: 4 µs
Wall time: 5.96 µs
Out[1]: 1

In[2]: %%time
       # Notice there is no out result in this case.
       x = 1
       x
CPU times: user 3 µs, sys: 0 ns, total: 3 µs
Wall time: 5.96 µs

最好的方法是什么?

更新

我已经在nbeextension中使用执行时间相当长一段时间了。这是伟大的。

更新2021 - 03

到目前为止,这是正确的答案。从本质上讲,%%time和%%timeit现在都像预期的那样工作。


当前回答

当使用print(res)时,有时单元格中的格式是不同的,但jupyter/ipython带有显示。请参阅下面使用pandas的格式差异示例。

%%time
import pandas as pd 
from IPython.display import display

df = pd.DataFrame({"col0":{"a":0,"b":0}
              ,"col1":{"a":1,"b":1}
              ,"col2":{"a":2,"b":2}
             })

#compare the following
print(df)
display(df)

display语句可以保留格式。

其他回答

这不是很漂亮,但没有额外的软件

class timeit():
    from datetime import datetime
    def __enter__(self):
        self.tic = self.datetime.now()
    def __exit__(self, *args, **kwargs):
        print('runtime: {}'.format(self.datetime.now() - self.tic))

然后你可以像这样运行它:

with timeit():
    # your code, e.g., 
    print(sum(range(int(1e7))))

% 49999995000000
% runtime: 0:00:00.338492

更简单的方法是使用jupyter_contrib_nbextensions包中的ExecuteTime插件。

pip install jupyter_contrib_nbextensions
jupyter contrib nbextension install --user
jupyter nbextension enable execute_time/ExecuteTime

%time和%timeit现在成为ipython内置魔法命令的一部分

我只是在单元格的开头添加了%%time,就得到了时间。您可以在Jupyter Spark集群/虚拟环境中使用相同的方法。只需在单元格顶部添加%%time,就会得到输出。在使用Jupyter的星火集群上,我添加到单元格的顶部,我得到如下输出

[1]  %%time
     import pandas as pd
     from pyspark.ml import Pipeline
     from pyspark.ml.classification import LogisticRegression
     import numpy as np
     .... code ....

Output :-

CPU times: user 59.8 s, sys: 4.97 s, total: 1min 4s
Wall time: 1min 18s

当使用print(res)时,有时单元格中的格式是不同的,但jupyter/ipython带有显示。请参阅下面使用pandas的格式差异示例。

%%time
import pandas as pd 
from IPython.display import display

df = pd.DataFrame({"col0":{"a":0,"b":0}
              ,"col1":{"a":1,"b":1}
              ,"col2":{"a":2,"b":2}
             })

#compare the following
print(df)
display(df)

display语句可以保留格式。