如何在整数列表中找到重复项并创建重复项的另一个列表?


当前回答

在没有任何python数据结构的帮助下,你可以简单地尝试下面的代码。这将工作于寻找重复的各种输入,如字符串,列表等。

# finding duplicates in unsorted an array 
def duplicates(numbers):
    store=[]
    checked=[]
    for i in range(len(numbers)):
        counter =1 
        for j in range(i+1,len(numbers)):
            if numbers[i] not in checked and numbers[j]==numbers[i] :
                counter +=1 
        if counter > 1 :
            store.append(numbers[i])
            checked.append(numbers[i])
    return store

print(duplicates([1,2,2,3,3,3,4,4,5]))  # output:  [2, 3, 4]
print(duplicates("madam"))              # output:  ['m', 'a']

其他回答

def removeduplicates(a):
  seen = set()

  for i in a:
    if i not in seen:
      seen.add(i)
  return seen 

print(removeduplicates([1,1,2,2]))

如果你不关心自己编写算法或使用库,Python 3.8一行代码:

l = [1,2,3,2,1,5,6,5,5,5]

res = [(x, count) for x, g in groupby(sorted(l)) if (count := len(list(g))) > 1]

print(res)

打印项目和计数:

[(1, 2), (2, 2), (5, 4)]

groupby接受一个分组函数,因此您可以以不同的方式定义分组,并根据需要返回额外的Tuple字段。

我没有看到一个纯粹使用迭代器的解决方案,所以我们开始吧

这需要对列表进行排序,这可能是这里的缺点。

a = [1,2,3,2,1,5,6,5,5,5]
a.sort()
set(map(lambda x: x[0], filter(lambda x: x[0] == x[1], zip(a, a[1:]))))

{1, 2, 5}

你可以用这段代码轻松检查你的机器有多快,有一百万潜在的重复:

首先生成数据

import random
from itertools import chain
a = list(chain(*[[n] * random.randint(1, 2) for n in range(1000000)]))

并运行测试:

set(map(lambda x: x[0], filter(lambda x: x[0] == x[1], zip(a, a[1:]))))

不用说,这个解决方案只在列表已经排序的情况下才有效。

有点晚了,但可能对一些人有帮助。 对于一个比较大的列表,我发现这个方法很适合我。

l=[1,2,3,5,4,1,3,1]
s=set(l)
d=[]
for x in l:
    if x in s:
        s.remove(x)
    else:
        d.append(x)
d
[1,3,1]

显示正确和所有重复,并保持秩序。

你不需要计数,只需要该物品之前是否被看到过。把这个答案用在这个问题上:

def list_duplicates(seq):
  seen = set()
  seen_add = seen.add
  # adds all elements it doesn't know yet to seen and all other to seen_twice
  seen_twice = set( x for x in seq if x in seen or seen_add(x) )
  # turn the set into a list (as requested)
  return list( seen_twice )

a = [1,2,3,2,1,5,6,5,5,5]
list_duplicates(a) # yields [1, 2, 5]

以防速度很重要,这里有一些时间安排:

# file: test.py
import collections

def thg435(l):
    return [x for x, y in collections.Counter(l).items() if y > 1]

def moooeeeep(l):
    seen = set()
    seen_add = seen.add
    # adds all elements it doesn't know yet to seen and all other to seen_twice
    seen_twice = set( x for x in l if x in seen or seen_add(x) )
    # turn the set into a list (as requested)
    return list( seen_twice )

def RiteshKumar(l):
    return list(set([x for x in l if l.count(x) > 1]))

def JohnLaRooy(L):
    seen = set()
    seen2 = set()
    seen_add = seen.add
    seen2_add = seen2.add
    for item in L:
        if item in seen:
            seen2_add(item)
        else:
            seen_add(item)
    return list(seen2)

l = [1,2,3,2,1,5,6,5,5,5]*100

以下是结果:(做得好@JohnLaRooy!)

$ python -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
10000 loops, best of 3: 74.6 usec per loop
$ python -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 91.3 usec per loop
$ python -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 266 usec per loop
$ python -mtimeit -s 'import test' 'test.RiteshKumar(test.l)'
100 loops, best of 3: 8.35 msec per loop

有趣的是,除了计时本身,当使用pypy时,排名也略有变化。最有趣的是,基于counter的方法极大地受益于pypy的优化,而我建议的方法缓存方法似乎几乎没有任何效果。

$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
100000 loops, best of 3: 17.8 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
10000 loops, best of 3: 23 usec per loop
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 39.3 usec per loop

显然,这种效应与输入数据的“重复性”有关。我设置了l = [random.randrange(1000000) for I in xrange(10000)],得到了这些结果:

$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
1000 loops, best of 3: 495 usec per loop
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
1000 loops, best of 3: 499 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 1.68 msec per loop