如何在整数列表中找到重复项并创建重复项的另一个列表?
当前回答
我注意到大多数解决方案的复杂度为O(n * n),对于大型列表来说非常缓慢。所以我想分享一下我写的函数,它支持整数或字符串,在最好的情况下是O(n)。对于一个包含10万个元素的列表,最上面的解决方案需要超过30秒,而我的解决方案只需0.12秒
def get_duplicates(list1):
'''Return all duplicates given a list. O(n) complexity for best case scenario.
input: [1, 1, 1, 2, 3, 4, 4]
output: [1, 1, 4]
'''
dic = {}
for el in list1:
try:
dic[el] += 1
except:
dic[el] = 1
dupes = []
for key in dic.keys():
for i in range(dic[key] - 1):
dupes.append(key)
return dupes
list1 = [1, 1, 1, 2, 3, 4, 4]
> print(get_duplicates(list1))
[1, 1, 4]
或者获得唯一的副本:
> print(list(set(get_duplicates(list1))))
[1, 4]
其他回答
使用toolz时:
from toolz import frequencies, valfilter
a = [1,2,2,3,4,5,4]
>>> list(valfilter(lambda count: count > 1, frequencies(a)).keys())
[2,4]
我在寻找相关的东西时遇到了这个问题-想知道为什么没有人提供基于生成器的解决方案?解决这个问题的方法是:
>>> print list(getDupes_9([1,2,3,2,1,5,6,5,5,5]))
[1, 2, 5]
我很关心可伸缩性,所以测试了几种方法,包括在小列表上工作得很好的naive项,但随着列表变大,可伸缩性很差(注意-使用timeit会更好,但这只是说明)。
我加入了@moooeeeep作为比较(它的速度非常快:如果输入列表是完全随机的,速度最快)和itertools方法,对于大多数排序的列表,它甚至更快……现在包括来自@ fireynx的熊猫方法-缓慢,但不是可怕的,而且简单。注意:在我的机器上,sort/tee/zip方法对于大型有序列表始终是最快的,moooeeeep对于洗牌列表是最快的,但您的情况可能会有所不同。
优势
非常快速简单的测试'任何'重复使用相同的代码
假设
重复项只应报告一次 重复的订单不需要保留 Duplicate可能位于列表中的任何位置
最快的解决方案,1m条目:
def getDupes(c):
'''sort/tee/izip'''
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in itertools.izip(a, b):
if k != g: continue
if k != r:
yield k
r = k
方法测试
import itertools
import time
import random
def getDupes_1(c):
'''naive'''
for i in xrange(0, len(c)):
if c[i] in c[:i]:
yield c[i]
def getDupes_2(c):
'''set len change'''
s = set()
for i in c:
l = len(s)
s.add(i)
if len(s) == l:
yield i
def getDupes_3(c):
'''in dict'''
d = {}
for i in c:
if i in d:
if d[i]:
yield i
d[i] = False
else:
d[i] = True
def getDupes_4(c):
'''in set'''
s,r = set(),set()
for i in c:
if i not in s:
s.add(i)
elif i not in r:
r.add(i)
yield i
def getDupes_5(c):
'''sort/adjacent'''
c = sorted(c)
r = None
for i in xrange(1, len(c)):
if c[i] == c[i - 1]:
if c[i] != r:
yield c[i]
r = c[i]
def getDupes_6(c):
'''sort/groupby'''
def multiple(x):
try:
x.next()
x.next()
return True
except:
return False
for k, g in itertools.ifilter(lambda x: multiple(x[1]), itertools.groupby(sorted(c))):
yield k
def getDupes_7(c):
'''sort/zip'''
c = sorted(c)
r = None
for k, g in zip(c[:-1],c[1:]):
if k == g:
if k != r:
yield k
r = k
def getDupes_8(c):
'''sort/izip'''
c = sorted(c)
r = None
for k, g in itertools.izip(c[:-1],c[1:]):
if k == g:
if k != r:
yield k
r = k
def getDupes_9(c):
'''sort/tee/izip'''
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in itertools.izip(a, b):
if k != g: continue
if k != r:
yield k
r = k
def getDupes_a(l):
'''moooeeeep'''
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
for x in l:
if x in seen or seen_add(x):
yield x
def getDupes_b(x):
'''iter*/sorted'''
x = sorted(x)
def _matches():
for k,g in itertools.izip(x[:-1],x[1:]):
if k == g:
yield k
for k, n in itertools.groupby(_matches()):
yield k
def getDupes_c(a):
'''pandas'''
import pandas as pd
vc = pd.Series(a).value_counts()
i = vc[vc > 1].index
for _ in i:
yield _
def hasDupes(fn,c):
try:
if fn(c).next(): return True # Found a dupe
except StopIteration:
pass
return False
def getDupes(fn,c):
return list(fn(c))
STABLE = True
if STABLE:
print 'Finding FIRST then ALL duplicates, single dupe of "nth" placed element in 1m element array'
else:
print 'Finding FIRST then ALL duplicates, single dupe of "n" included in randomised 1m element array'
for location in (50,250000,500000,750000,999999):
for test in (getDupes_2, getDupes_3, getDupes_4, getDupes_5, getDupes_6,
getDupes_8, getDupes_9, getDupes_a, getDupes_b, getDupes_c):
print 'Test %-15s:%10d - '%(test.__doc__ or test.__name__,location),
deltas = []
for FIRST in (True,False):
for i in xrange(0, 5):
c = range(0,1000000)
if STABLE:
c[0] = location
else:
c.append(location)
random.shuffle(c)
start = time.time()
if FIRST:
print '.' if location == test(c).next() else '!',
else:
print '.' if [location] == list(test(c)) else '!',
deltas.append(time.time()-start)
print ' -- %0.3f '%(sum(deltas)/len(deltas)),
print
print
“all dupes”测试的结果是一致的,在这个数组中找到“first”重复,然后是“all”重复:
Finding FIRST then ALL duplicates, single dupe of "nth" placed element in 1m element array
Test set len change : 500000 - . . . . . -- 0.264 . . . . . -- 0.402
Test in dict : 500000 - . . . . . -- 0.163 . . . . . -- 0.250
Test in set : 500000 - . . . . . -- 0.163 . . . . . -- 0.249
Test sort/adjacent : 500000 - . . . . . -- 0.159 . . . . . -- 0.229
Test sort/groupby : 500000 - . . . . . -- 0.860 . . . . . -- 1.286
Test sort/izip : 500000 - . . . . . -- 0.165 . . . . . -- 0.229
Test sort/tee/izip : 500000 - . . . . . -- 0.145 . . . . . -- 0.206 *
Test moooeeeep : 500000 - . . . . . -- 0.149 . . . . . -- 0.232
Test iter*/sorted : 500000 - . . . . . -- 0.160 . . . . . -- 0.221
Test pandas : 500000 - . . . . . -- 0.493 . . . . . -- 0.499
当列表首先被打乱时,排序的代价就变得明显了——效率显著下降,@moooeeeep方法占主导地位,set和dict方法类似,但性能较差:
Finding FIRST then ALL duplicates, single dupe of "n" included in randomised 1m element array
Test set len change : 500000 - . . . . . -- 0.321 . . . . . -- 0.473
Test in dict : 500000 - . . . . . -- 0.285 . . . . . -- 0.360
Test in set : 500000 - . . . . . -- 0.309 . . . . . -- 0.365
Test sort/adjacent : 500000 - . . . . . -- 0.756 . . . . . -- 0.823
Test sort/groupby : 500000 - . . . . . -- 1.459 . . . . . -- 1.896
Test sort/izip : 500000 - . . . . . -- 0.786 . . . . . -- 0.845
Test sort/tee/izip : 500000 - . . . . . -- 0.743 . . . . . -- 0.804
Test moooeeeep : 500000 - . . . . . -- 0.234 . . . . . -- 0.311 *
Test iter*/sorted : 500000 - . . . . . -- 0.776 . . . . . -- 0.840
Test pandas : 500000 - . . . . . -- 0.539 . . . . . -- 0.540
为了实现这个问题,我们可以使用多种不同的方法来解决它,这两种是常见的解决方案,但在实际场景中实现它们时,我们还必须考虑时间复杂性。
import random
import time
dupl_list = [random.randint(1,1000) for x in range(500)]
print("List with duplicate integers")
print (dupl_list)
#Method 1
print("******************Method 1 *************")
def Repeat_num(x):
_size = len(x)
repeated = []
for i in range(_size):
# print(i)
k = i + 1
for j in range(k, _size):
# print(j)
if x[i] == x[j] and x[i] not in repeated:
repeated.append(x[i])
return repeated
start = time.time()
print(Repeat_num(dupl_list))
end = time.time()
print("The time of execution of above program is :",(end-start) * 10**3, "ms")
print("***************Method 2****************")
#method 2 - using count()
def repeast_count(dup_list):
new = []
for a in dup_list:
# print(a)
# checking the occurrence of elements
n = dup_list.count(a)
# if the occurrence is more than
# one we add it to the output list
if n > 1:
if new.count(a) == 0: # condition to check
new.append(a)
return new
start = time.time()
print(repeast_count(dupl_list))
end = time.time()
print("The time of execution of above program is :",(end-start) * 10**3, "ms")
# #输出示例:
List with duplicate integers
[5, 45, 28, 81, 32, 98, 8, 83, 47, 95, 41, 49, 4, 1, 85, 26, 38, 82, 54, 11]
******************Method 1 *************
[]
The time of execution of above program is : 1.1069774627685547 ms
***************Method 2****************
[]
The time of execution of above program is : 0.1881122589111328 ms
对于一般的理解,方法1是好的,但是对于真正的实现,我更喜欢方法2,因为它比方法1花费的时间更少。
list2 = [1, 2, 3, 4, 1, 2, 3]
lset = set()
[(lset.add(item), list2.append(item))
for item in list2 if item not in lset]
print list(lset)
下面是一个快速生成器,它使用dict将每个元素存储为一个带有布尔值的键,用于检查是否已经产生了重复项。
对于所有元素都是可哈希类型的列表:
def gen_dupes(array):
unique = {}
for value in array:
if value in unique and unique[value]:
unique[value] = False
yield value
else:
unique[value] = True
array = [1, 2, 2, 3, 4, 1, 5, 2, 6, 6]
print(list(gen_dupes(array)))
# => [2, 1, 6]
对于可能包含列表的列表:
def gen_dupes(array):
unique = {}
for value in array:
is_list = False
if type(value) is list:
value = tuple(value)
is_list = True
if value in unique and unique[value]:
unique[value] = False
if is_list:
value = list(value)
yield value
else:
unique[value] = True
array = [1, 2, 2, [1, 2], 3, 4, [1, 2], 5, 2, 6, 6]
print(list(gen_dupes(array)))
# => [2, [1, 2], 6]
推荐文章
- Numpy Max vs amax vs maximum
- 我应该在.gitignore文件中添加Django迁移文件吗?
- 每n行有熊猫
- 实例属性attribute_name定义在__init__之外
- 如何获取在Python中捕获的异常的名称?
- 第一次出现的值大于现有值的Numpy
- 如何从Python函数中返回两个值?
- 前一个月的Python日期
- Python中方括号括起来的列表和圆括号括起来的列表有什么区别?
- Python日志记录不输出任何东西
- 每n秒运行特定代码
- SQLAlchemy是否有与Django的get_or_create等价的函数?
- 如何将python datetime转换为字符串,具有可读格式的日期?
- 美丽的汤和提取div及其内容的ID
- 在Python中重置生成器对象