如何在整数列表中找到重复项并创建重复项的另一个列表?


当前回答

不需要转换为列表,可能最简单的方法是如下所示。 在面试中,当他们要求不要使用集合时,这可能会很有用

a=[1,2,3,3,3]
dup=[]
for each in a:
  if each not in dup:
    dup.append(each)
print(dup)

======= else获取唯一值和重复值的2个单独列表

a=[1,2,3,3,3]
uniques=[]
dups=[]

for each in a:
  if each not in uniques:
    uniques.append(each)
  else:
    dups.append(each)
print("Unique values are below:")
print(uniques)
print("Duplicate values are below:")
print(dups)

其他回答

你可以使用iteration_utilities.duplicate:

>>> from iteration_utilities import duplicates

>>> list(duplicates([1,1,2,1,2,3,4,2]))
[1, 1, 2, 2]

或者如果你只想要一个副本,可以结合iteration_utilities.unique_everseen:

>>> from iteration_utilities import unique_everseen

>>> list(unique_everseen(duplicates([1,1,2,1,2,3,4,2])))
[1, 2]

它也可以处理不可哈希的元素(但是以性能为代价):

>>> list(duplicates([[1], [2], [1], [3], [1]]))
[[1], [1]]

>>> list(unique_everseen(duplicates([[1], [2], [1], [3], [1]])))
[[1]]

这是只有少数其他方法可以处理的问题。

基准

我做了一个快速的基准测试,其中包含了这里提到的大部分(但不是全部)方法。

第一个基准测试只包含了很小范围的列表长度,因为一些方法具有O(n**2)行为。

在图表中,y轴代表时间,所以值越低越好。它还绘制了log-log,以便更好地可视化广泛的值范围:

除去O(n**2)方法,我在一个列表中做了另一个多达50万个元素的基准测试:

正如您所看到的iteration_utilities。duplicate方法比任何其他方法都快,甚至连链接unique_everseen(duplicate(…))也比其他方法更快或同样快。

这里需要注意的另一件有趣的事情是,熊猫方法对于小列表非常慢,但可以轻松地竞争较长的列表。

然而,由于这些基准测试显示大多数方法的性能大致相同,因此使用哪一种并不重要(除了有O(n**2)运行时的3种方法)。

from iteration_utilities import duplicates, unique_everseen
from collections import Counter
import pandas as pd
import itertools

def georg_counter(it):
    return [item for item, count in Counter(it).items() if count > 1]

def georg_set(it):
    seen = set()
    uniq = []
    for x in it:
        if x not in seen:
            uniq.append(x)
            seen.add(x)

def georg_set2(it):
    seen = set()
    return [x for x in it if x not in seen and not seen.add(x)]   

def georg_set3(it):
    seen = {}
    dupes = []

    for x in it:
        if x not in seen:
            seen[x] = 1
        else:
            if seen[x] == 1:
                dupes.append(x)
            seen[x] += 1

def RiteshKumar_count(l):
    return set([x for x in l if l.count(x) > 1])

def moooeeeep(seq):
    seen = set()
    seen_add = seen.add
    # adds all elements it doesn't know yet to seen and all other to seen_twice
    seen_twice = set( x for x in seq if x in seen or seen_add(x) )
    # turn the set into a list (as requested)
    return list( seen_twice )

def F1Rumors_implementation(c):
    a, b = itertools.tee(sorted(c))
    next(b, None)
    r = None
    for k, g in zip(a, b):
        if k != g: continue
        if k != r:
            yield k
            r = k

def F1Rumors(c):
    return list(F1Rumors_implementation(c))

def Edward(a):
    d = {}
    for elem in a:
        if elem in d:
            d[elem] += 1
        else:
            d[elem] = 1
    return [x for x, y in d.items() if y > 1]

def wordsmith(a):
    return pd.Series(a)[pd.Series(a).duplicated()].values

def NikhilPrabhu(li):
    li = li.copy()
    for x in set(li):
        li.remove(x)

    return list(set(li))

def firelynx(a):
    vc = pd.Series(a).value_counts()
    return vc[vc > 1].index.tolist()

def HenryDev(myList):
    newList = set()

    for i in myList:
        if myList.count(i) >= 2:
            newList.add(i)

    return list(newList)

def yota(number_lst):
    seen_set = set()
    duplicate_set = set(x for x in number_lst if x in seen_set or seen_set.add(x))
    return seen_set - duplicate_set

def IgorVishnevskiy(l):
    s=set(l)
    d=[]
    for x in l:
        if x in s:
            s.remove(x)
        else:
            d.append(x)
    return d

def it_duplicates(l):
    return list(duplicates(l))

def it_unique_duplicates(l):
    return list(unique_everseen(duplicates(l)))

基准1

from simple_benchmark import benchmark
import random

funcs = [
    georg_counter, georg_set, georg_set2, georg_set3, RiteshKumar_count, moooeeeep, 
    F1Rumors, Edward, wordsmith, NikhilPrabhu, firelynx,
    HenryDev, yota, IgorVishnevskiy, it_duplicates, it_unique_duplicates
]

args = {2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(2, 12)}

b = benchmark(funcs, args, 'list size')

b.plot()

基准2

funcs = [
    georg_counter, georg_set, georg_set2, georg_set3, moooeeeep, 
    F1Rumors, Edward, wordsmith, firelynx,
    yota, IgorVishnevskiy, it_duplicates, it_unique_duplicates
]

args = {2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(2, 20)}

b = benchmark(funcs, args, 'list size')
b.plot()

免责声明

1这是我写的一个第三方库:iteration_utilities。

这里有很多答案,但我认为这是一个相对易于阅读和理解的方法:

def get_duplicates(sorted_list):
    duplicates = []
    last = sorted_list[0]
    for x in sorted_list[1:]:
        if x == last:
            duplicates.append(x)
        last = x
    return set(duplicates)

注:

如果您希望保留重复计数,请去掉强制转换 'set'在底部获得完整的列表 如果您更喜欢使用生成器,请将duplicate .append(x)替换为yield x和底部的return语句(您可以稍后强制转换为set)

在列表中使用list.count()方法查找给定列表的重复元素

arr=[]
dup =[]
for i in range(int(input("Enter range of list: "))):
    arr.append(int(input("Enter Element in a list: ")))
for i in arr:
    if arr.count(i)>1 and i not in dup:
        dup.append(i)
print(dup)

一句话解决方案:

set([i for i in list if sum([1 for a in list if a == i]) > 1])

要删除重复项,请使用集合(a)。要打印副本,可以这样做:

a = [1,2,3,2,1,5,6,5,5,5]

import collections
print([item for item, count in collections.Counter(a).items() if count > 1])

## [1, 2, 5]

请注意Counter并不是特别有效(计时),可能会在这里过度使用。Set会表现得更好。这段代码以源顺序计算一个唯一元素的列表:

seen = set()
uniq = []
for x in a:
    if x not in seen:
        uniq.append(x)
        seen.add(x)

或者,更简洁地说:

seen = set()
uniq = [x for x in a if x not in seen and not seen.add(x)]    

我不推荐后一种风格,因为它不清楚not seen.add(x)在做什么(set add()方法总是返回None,因此需要not)。

计算没有库的重复元素列表:

seen = set()
dupes = []

for x in a:
    if x in seen:
        dupes.append(x)
    else:
        seen.add(x)

或者,更简洁地说:

seen = set()
dupes = [x for x in a if x in seen or seen.add(x)]    

如果列表元素不可哈希,则不能使用set /dicts,必须使用二次时间解决方案(逐个比较)。例如:

a = [[1], [2], [3], [1], [5], [3]]

no_dupes = [x for n, x in enumerate(a) if x not in a[:n]]
print no_dupes # [[1], [2], [3], [5]]

dupes = [x for n, x in enumerate(a) if x in a[:n]]
print dupes # [[1], [3]]