如何在整数列表中找到重复项并创建重复项的另一个列表?


当前回答

第三个接受答案的例子给出了一个错误的答案,并且没有试图给出重复的答案。下面是正确的版本:

number_lst = [1, 1, 2, 3, 5, ...]

seen_set = set()
duplicate_set = set(x for x in number_lst if x in seen_set or seen_set.add(x))
unique_set = seen_set - duplicate_set

其他回答

假设我们有这个元素列表:

a = [1, 2, 3, 2, 1, 5, 6, 5, 5, 5]

我们可以只使用集合来找到唯一的元素:

unique = set()
for num in a:
    if num not in unique:
        unique.add(num)
    else:
        unique = unique - set([num])

最后:

>>> unique
{3, 6}

如果你想要得到副本,你可以简单地做:

>>> duplicates = set(a) - unique
>>> duplicates
{1, 2, 5}

注:

集合中的元素查找是O(1) 从集合中移除的元素是O(1)

为了实现这个问题,我们可以使用多种不同的方法来解决它,这两种是常见的解决方案,但在实际场景中实现它们时,我们还必须考虑时间复杂性。

import random
import time

dupl_list = [random.randint(1,1000) for x in range(500)]
print("List with duplicate integers")
print (dupl_list)


#Method 1 
print("******************Method 1 *************")

def Repeat_num(x):
    _size = len(x)
    repeated = []
    for i in range(_size):
        # print(i)
        k = i + 1
        for j in range(k, _size):
            # print(j)
            if x[i] == x[j] and x[i] not in repeated:
                repeated.append(x[i])
    return repeated

start = time.time()
print(Repeat_num(dupl_list))
end = time.time()
print("The time of execution of above program is :",(end-start) * 10**3, "ms")

print("***************Method 2****************")

#method 2 - using count()
def repeast_count(dup_list):
  new = []
  for a in dup_list:
      # print(a)
      # checking the occurrence of elements
      n = dup_list.count(a)
      # if the occurrence is more than
      # one we add it to the output list
      if n > 1:
          if new.count(a) == 0:  # condition to check
              new.append(a)
  return new


start = time.time()
print(repeast_count(dupl_list))
end = time.time()
print("The time of execution of above program is :",(end-start) * 10**3, "ms")

# #输出示例:

List with duplicate integers
[5, 45, 28, 81, 32, 98, 8, 83, 47, 95, 41, 49, 4, 1, 85, 26, 38, 82, 54, 11]
******************Method 1 *************
[]
The time of execution of above program is : 1.1069774627685547 ms
***************Method 2****************
[]
The time of execution of above program is : 0.1881122589111328 ms

对于一般的理解,方法1是好的,但是对于真正的实现,我更喜欢方法2,因为它比方法1花费的时间更少。

你不需要计数,只需要该物品之前是否被看到过。把这个答案用在这个问题上:

def list_duplicates(seq):
  seen = set()
  seen_add = seen.add
  # adds all elements it doesn't know yet to seen and all other to seen_twice
  seen_twice = set( x for x in seq if x in seen or seen_add(x) )
  # turn the set into a list (as requested)
  return list( seen_twice )

a = [1,2,3,2,1,5,6,5,5,5]
list_duplicates(a) # yields [1, 2, 5]

以防速度很重要,这里有一些时间安排:

# file: test.py
import collections

def thg435(l):
    return [x for x, y in collections.Counter(l).items() if y > 1]

def moooeeeep(l):
    seen = set()
    seen_add = seen.add
    # adds all elements it doesn't know yet to seen and all other to seen_twice
    seen_twice = set( x for x in l if x in seen or seen_add(x) )
    # turn the set into a list (as requested)
    return list( seen_twice )

def RiteshKumar(l):
    return list(set([x for x in l if l.count(x) > 1]))

def JohnLaRooy(L):
    seen = set()
    seen2 = set()
    seen_add = seen.add
    seen2_add = seen2.add
    for item in L:
        if item in seen:
            seen2_add(item)
        else:
            seen_add(item)
    return list(seen2)

l = [1,2,3,2,1,5,6,5,5,5]*100

以下是结果:(做得好@JohnLaRooy!)

$ python -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
10000 loops, best of 3: 74.6 usec per loop
$ python -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 91.3 usec per loop
$ python -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 266 usec per loop
$ python -mtimeit -s 'import test' 'test.RiteshKumar(test.l)'
100 loops, best of 3: 8.35 msec per loop

有趣的是,除了计时本身,当使用pypy时,排名也略有变化。最有趣的是,基于counter的方法极大地受益于pypy的优化,而我建议的方法缓存方法似乎几乎没有任何效果。

$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
100000 loops, best of 3: 17.8 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
10000 loops, best of 3: 23 usec per loop
$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
10000 loops, best of 3: 39.3 usec per loop

显然,这种效应与输入数据的“重复性”有关。我设置了l = [random.randrange(1000000) for I in xrange(10000)],得到了这些结果:

$ pypy -mtimeit -s 'import test' 'test.moooeeeep(test.l)'
1000 loops, best of 3: 495 usec per loop
$ pypy -mtimeit -s 'import test' 'test.JohnLaRooy(test.l)'
1000 loops, best of 3: 499 usec per loop
$ pypy -mtimeit -s 'import test' 'test.thg435(test.l)'
1000 loops, best of 3: 1.68 msec per loop

这里有一个简洁明了的解决方案——

for x in set(li):
    li.remove(x)

li = list(set(li))

使用Set函数 如:-

arr=[1,4,2,5,2,3,4,1,4,5,2,3]
arr2=list(set(arr))
print(arr2)

输出:- [1,2,3,4,5]

使用array删除副本

eg:-

arr=[1,4,2,5,2,3,4,1,4,5,2,3]
arr3=[]
for i in arr:
    if(i not in arr3):
     arr3.append(i)
print(arr3)

输出: [1,4,2,5,3]

使用Lambda函数

eg:-

rem_duplicate_func=lambda arr:set(arr)
print(rem_duplicate_func(arr))

输出: {1,2,3,4,5}

从字典中删除重复值

eg:-

dict1={
    'car':["Ford","Toyota","Ford","Toyota"],
    'brand':["Mustang","Ranz","Mustang","Ranz"] } dict2={} for key,value in dict1.items():
    dict2[key]=set(value) print(dict2)

输出: {“车”:{“丰田”、“福特”},“品牌”:{“主攻”、“野马”}}

对称差异-删除重复元素

eg:-

set1={1,2,4,5}
set2={2,1,5,7}
rem_dup_ele=set1.symmetric_difference(set2)
print(rem_dup_ele)

输出: {4 7}