我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?
换句话说,一个在df1中所有的行/列都不在df2中的数据帧?
我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?
换句话说,一个在df1中所有的行/列都不在df2中的数据帧?
当前回答
也许是一个简单的单行程序,具有相同或不同的列名。即使df2['Name2']包含重复的值也能正常工作。
newDf = df1.set_index('Name1')
.drop(df2['Name2'], errors='ignore')
.reset_index(drop=False)
其他回答
edit2,我想出了一个新的解决方案,不需要设置索引
newdf=pd.concat([df1,df2]).drop_duplicates(keep=False)
好吧,我发现最高投票的答案已经包含我已经弄明白了。是的,我们只能在每个dfs中没有重复的情况下使用此代码。
我有一个棘手的方法。首先,我们将“Name”设置为问题给出的两个数据框架的索引。由于我们在两个dfs中有相同的' Name ',我们可以从'大' df中删除'小' df的索引。 这是代码。
df1.set_index('Name',inplace=True)
df2.set_index('Name',inplace=True)
newdf=df1.drop(df2.index)
正如这里提到的 那
df1[~df1.apply(tuple,1).isin(df2.apply(tuple,1))]
是正确的解决方案,但它会产生错误的输出如果
df1=pd.DataFrame({'A':[1],'B':[2]})
df2=pd.DataFrame({'A':[1,2,3,3],'B':[2,3,4,4]})
在这种情况下,上面的溶液会给出 空数据帧,相反,你应该使用concat方法后,从每个数据帧删除重复。
使用concate和drop_duplicate
df1=df1.drop_duplicates(keep="first")
df2=df2.drop_duplicates(keep="first")
pd.concat([df1,df2]).drop_duplicates(keep=False)
使用lambda函数,您可以过滤_merge值为“left_only”的行,以获得df1中df2中缺失的所有行
df3 = df1.merge(df2, how = 'outer' ,indicator=True).loc[lambda x :x['_merge']=='left_only']
df
试试这个: Df_new = df1。merge(df2, how='outer', indicator=True)。查询('_merge == "left_only"')。下降(_merge, 1)
它将产生一个新的数据框架,其差异是:df1中存在的值,而df2中不存在。
也许是一个简单的单行程序,具有相同或不同的列名。即使df2['Name2']包含重复的值也能正常工作。
newDf = df1.set_index('Name1')
.drop(df2['Name2'], errors='ignore')
.reset_index(drop=False)