我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?

换句话说,一个在df1中所有的行/列都不在df2中的数据帧?


当前回答

也许是一个简单的单行程序,具有相同或不同的列名。即使df2['Name2']包含重复的值也能正常工作。

newDf = df1.set_index('Name1')
           .drop(df2['Name2'], errors='ignore')
           .reset_index(drop=False)

其他回答

pandas DataFrame.compare中有一种新的方法,即比较2个不同的dataframe,并返回数据记录中每列中变化的值。

例子

第一个Dataframe

Id Customer Status      Date
1      ABC   Good  Mar 2023
2      BAC   Good  Feb 2024
3      CBA    Bad  Apr 2022

第二个Dataframe

Id Customer Status      Date
1      ABC    Bad  Mar 2023
2      BAC   Good  Feb 2024
5      CBA   Good  Apr 2024

比较Dataframes

print("Dataframe difference -- \n")
print(df1.compare(df2))

print("Dataframe difference keeping equal values -- \n")
print(df1.compare(df2, keep_equal=True))

print("Dataframe difference keeping same shape -- \n")
print(df1.compare(df2, keep_shape=True))

print("Dataframe difference keeping same shape and equal values -- \n")
print(df1.compare(df2, keep_shape=True, keep_equal=True))

结果

Dataframe difference -- 

    Id       Status            Date          
  self other   self other      self     other
0  NaN   NaN   Good   Bad       NaN       NaN
2  3.0   5.0    Bad  Good  Apr 2022  Apr 2024

Dataframe difference keeping equal values -- 

    Id       Status            Date          
  self other   self other      self     other
0    1     1   Good   Bad  Mar 2023  Mar 2023
2    3     5    Bad  Good  Apr 2022  Apr 2024

Dataframe difference keeping same shape -- 

    Id       Customer       Status            Date          
  self other     self other   self other      self     other
0  NaN   NaN      NaN   NaN   Good   Bad       NaN       NaN
1  NaN   NaN      NaN   NaN    NaN   NaN       NaN       NaN
2  3.0   5.0      NaN   NaN    Bad  Good  Apr 2022  Apr 2024

Dataframe difference keeping same shape and equal values -- 

    Id       Customer       Status            Date          
  self other     self other   self other      self     other
0    1     1      ABC   ABC   Good   Bad  Mar 2023  Mar 2023
1    2     2      BAC   BAC   Good  Good  Feb 2024  Feb 2024
2    3     5      CBA   CBA    Bad  Good  Apr 2022  Apr 2024

nice @liangli的解决方案略有变化,不需要改变现有数据框架的索引:

newdf = df1.drop(df1.join(df2.set_index('Name').index))

我在处理副本时遇到了问题,当一边有副本,另一边至少有一个副本时,所以我使用了Counter。集合做一个更好的差异,确保双方有相同的计数。这不会返回副本,但如果双方有相同的计数,则不会返回任何副本。

from collections import Counter

def diff(df1, df2, on=None):
    """
    :param on: same as pandas.df.merge(on) (a list of columns)
    """
    on = on if on else df1.columns
    df1on = df1[on]
    df2on = df2[on]
    c1 = Counter(df1on.apply(tuple, 'columns'))
    c2 = Counter(df2on.apply(tuple, 'columns'))
    c1c2 = c1-c2
    c2c1 = c2-c1
    df1ondf2on = pd.DataFrame(list(c1c2.elements()), columns=on)
    df2ondf1on = pd.DataFrame(list(c2c1.elements()), columns=on)
    df1df2 = df1.merge(df1ondf2on).drop_duplicates(subset=on)
    df2df1 = df2.merge(df2ondf1on).drop_duplicates(subset=on)
    return pd.concat([df1df2, df2df1])
> df1 = pd.DataFrame({'a': [1, 1, 3, 4, 4]})
> df2 = pd.DataFrame({'a': [1, 2, 3, 4, 4]})
> diff(df1, df2)
   a
0  1
0  2

使用lambda函数,您可以过滤_merge值为“left_only”的行,以获得df1中df2中缺失的所有行

df3 = df1.merge(df2, how = 'outer' ,indicator=True).loc[lambda x :x['_merge']=='left_only']
df
import pandas as pd
# given
df1 = pd.DataFrame({'Name':['John','Mike','Smith','Wale','Marry','Tom','Menda','Bolt','Yuswa',],
    'Age':[23,45,12,34,27,44,28,39,40]})
df2 = pd.DataFrame({'Name':['John','Smith','Wale','Tom','Menda','Yuswa',],
    'Age':[23,12,34,44,28,40]})

# find elements in df1 that are not in df2
df_1notin2 = df1[~(df1['Name'].isin(df2['Name']) & df1['Age'].isin(df2['Age']))].reset_index(drop=True)

# output:
print('df1\n', df1)
print('df2\n', df2)
print('df_1notin2\n', df_1notin2)

# df1
#     Age   Name
# 0   23   John
# 1   45   Mike
# 2   12  Smith
# 3   34   Wale
# 4   27  Marry
# 5   44    Tom
# 6   28  Menda
# 7   39   Bolt
# 8   40  Yuswa
# df2
#     Age   Name
# 0   23   John
# 1   12  Smith
# 2   34   Wale
# 3   44    Tom
# 4   28  Menda
# 5   40  Yuswa
# df_1notin2
#     Age   Name
# 0   45   Mike
# 1   27  Marry
# 2   39   Bolt