给定两个包含范围[x1:x2]和[y1:y2],其中x1≤x2和y1≤y2,测试这两个范围是否有重叠的最有效方法是什么?

一个简单的实现如下:

bool testOverlap(int x1, int x2, int y1, int y2) {
  return (x1 >= y1 && x1 <= y2) ||
         (x2 >= y1 && x2 <= y2) ||
         (y1 >= x1 && y1 <= x2) ||
         (y2 >= x1 && y2 <= x2);
}

但是我希望有更有效的方法来计算这个。

就最少的操作而言,哪种方法是最有效的?


当前回答

西蒙的回答很好,但对我来说,相反的情况更容易思考。

什么时候两个范围不重叠?当其中一个开始后另一个结束时,它们不会重叠:

dont_overlap = x2 < y1 || x1 > y2

当它们重叠时,很容易表示:

overlap = !dont_overlap = !(x2 < y1 || x1 > y2) = (x2 >= y1 && x1 <= y2)

其他回答

给定两个范围[x1,x2], [y1,y2]

def is_overlapping(x1,x2,y1,y2):
    return max(x1,y1) <= min(x2,y2)

反过来思考:如何使这两个范围不重叠?给定[x1, x2],则[y1, y2]应在[x1, x2]之外,即y1 < y2 < x1或x2 < y1 < y2,这等价于y2 < x1或x2 < y1。

因此,使两个范围重叠的条件是:不(y2 < x1或x2 < y1),这相当于y2 >= x1和x2 >= y1(与Simon接受的答案相同)。

我相信min(upper(A),upper(B))>=max(lower(A),lower(B))将是一个很好的解决方案,不仅因为它的简单性,而且因为它超越了两个范围的可扩展性。

如果有人正在寻找计算实际重叠的一行程序:

int overlap = ( x2 > y1 || y2 < x1 ) ? 0 : (y2 >= y1 && x2 <= y1 ? y1 : y2) - ( x2 <= x1 && y2 >= x1 ? x1 : x2) + 1; //max 11 operations

如果你想要少一些操作,但多一些变量:

bool b1 = x2 <= y1;
bool b2 = y2 >= x1;
int overlap = ( !b1 || !b2 ) ? 0 : (y2 >= y1 && b1 ? y1 : y2) - ( x2 <= x1 && b2 ? x1 : x2) + 1; // max 9 operations

我想问题是关于最快的代码,而不是最短的代码。最快的版本必须避免分支,所以我们可以这样写:

对于简单的例子:

static inline bool check_ov1(int x1, int x2, int y1, int y2){
    // insetead of x1 < y2 && y1 < x2
    return (bool)(((unsigned int)((y1-x2)&(x1-y2))) >> (sizeof(int)*8-1));
};

或者,对于这种情况:

static inline bool check_ov2(int x1, int x2, int y1, int y2){
    // insetead of x1 <= y2 && y1 <= x2
    return (bool)((((unsigned int)((x2-y1)|(y2-x1))) >> (sizeof(int)*8-1))^1);
};