如何获取panda数据帧df的行数?


当前回答

假设数据集是“data”,将数据集命名为“data_fr”,data_fr中的行数为“nu_rows”

#import the data frame. Extention could be different as csv,xlsx or etc.
data_fr = pd.read_csv('data.csv')

#print the number of rows
nu_rows = data_fr.shape[0]
print(nu_rows)

其他回答

假设数据集是“data”,将数据集命名为“data_fr”,data_fr中的行数为“nu_rows”

#import the data frame. Extention could be different as csv,xlsx or etc.
data_fr = pd.read_csv('data.csv')

#print the number of rows
nu_rows = data_fr.shape[0]
print(nu_rows)

如果要在链接操作的中间获取行数,可以使用:

df.pipe(len)

例子:

row_count = (
      pd.DataFrame(np.random.rand(3,4))
      .reset_index()
      .pipe(len)
)

如果您不想在len()函数中放一个长语句,这可能很有用。

您可以改用__len__(),但__len__)看起来有点奇怪。

对于dataframe df,在浏览数据时使用的打印逗号格式的行计数:

def nrow(df):
    print("{:,}".format(df.shape[0]))

例子:

nrow(my_df)
12,456,789

假设df是您的数据帧,那么:

count_row = df.shape[0]  # Gives number of rows
count_col = df.shape[1]  # Gives number of columns

或者更简洁地说,

r, c = df.shape

这两种方法都可以做到(df是DataFrame的名称):

方法1:使用len函数:

len(df)将给出名为df的DataFrame中的行数。

方法2:使用计数函数:

df[col].count()将计算给定列col中的行数。

df.count()将给出所有列的行数。