如何获取panda数据帧df的行数?
当前回答
我从R背景来到Pandas,我发现Pandas在选择行或列时更加复杂。
我不得不与它搏斗一段时间,然后我找到了一些应对方法:
获取列数:
len(df.columns)
## Here:
# df is your data.frame
# df.columns returns a string. It contains column's titles of the df.
# Then, "len()" gets the length of it.
获取行数:
len(df.index) # It's similar.
其他回答
找出数据帧中行数的另一种方法是pandas.Index.size,我认为这是最可读的变体。
请注意,正如我对公认答案的评论,
疑似pandas.Index.size实际上比len(df.Index)更快,但在我的计算机上告诉的是相反的情况(每个循环大约慢150 ns)。
除了前面的答案之外,您还可以使用df.axes获取具有行和列索引的元组,然后使用len()函数:
total_rows = len(df.axes[0])
total_cols = len(df.axes[1])
这两种方法都可以做到(df是DataFrame的名称):
方法1:使用len函数:
len(df)将给出名为df的DataFrame中的行数。
方法2:使用计数函数:
df[col].count()将计算给定列col中的行数。
df.count()将给出所有列的行数。
使用len(df)或len(df.index)时,可能会遇到以下错误:
----> 4 df['id'] = np.arange(len(df.index)
TypeError: 'int' object is not callable
解决方案:
lengh = df.shape[0]
假设数据集是“data”,将数据集命名为“data_fr”,data_fr中的行数为“nu_rows”
#import the data frame. Extention could be different as csv,xlsx or etc.
data_fr = pd.read_csv('data.csv')
#print the number of rows
nu_rows = data_fr.shape[0]
print(nu_rows)
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 确定每列中NA值的个数
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 如何结合多个条件子集数据帧使用“或”?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式