如何获取panda数据帧df的行数?


当前回答

我从R背景来到Pandas,我发现Pandas在选择行或列时更加复杂。

我不得不与它搏斗一段时间,然后我找到了一些应对方法:

获取列数:

len(df.columns)
## Here:
# df is your data.frame
# df.columns returns a string. It contains column's titles of the df.
# Then, "len()" gets the length of it.

获取行数:

len(df.index) # It's similar.

其他回答

找出数据帧中行数的另一种方法是pandas.Index.size,我认为这是最可读的变体。

请注意,正如我对公认答案的评论,

疑似pandas.Index.size实际上比len(df.Index)更快,但在我的计算机上告诉的是相反的情况(每个循环大约慢150 ns)。

除了前面的答案之外,您还可以使用df.axes获取具有行和列索引的元组,然后使用len()函数:

total_rows = len(df.axes[0])
total_cols = len(df.axes[1])

这两种方法都可以做到(df是DataFrame的名称):

方法1:使用len函数:

len(df)将给出名为df的DataFrame中的行数。

方法2:使用计数函数:

df[col].count()将计算给定列col中的行数。

df.count()将给出所有列的行数。

使用len(df)或len(df.index)时,可能会遇到以下错误:

----> 4 df['id'] = np.arange(len(df.index)
TypeError: 'int' object is not callable

解决方案:

lengh = df.shape[0]

假设数据集是“data”,将数据集命名为“data_fr”,data_fr中的行数为“nu_rows”

#import the data frame. Extention could be different as csv,xlsx or etc.
data_fr = pd.read_csv('data.csv')

#print the number of rows
nu_rows = data_fr.shape[0]
print(nu_rows)