如何获取panda数据帧df的行数?
当前回答
使用len(df)或len(df.index)时,可能会遇到以下错误:
----> 4 df['id'] = np.arange(len(df.index)
TypeError: 'int' object is not callable
解决方案:
lengh = df.shape[0]
其他回答
使用len(df)或len(df.index)时,可能会遇到以下错误:
----> 4 df['id'] = np.arange(len(df.index)
TypeError: 'int' object is not callable
解决方案:
lengh = df.shape[0]
除了前面的答案之外,您还可以使用df.axes获取具有行和列索引的元组,然后使用len()函数:
total_rows = len(df.axes[0])
total_cols = len(df.axes[1])
假设df是您的数据帧,那么:
count_row = df.shape[0] # Gives number of rows
count_col = df.shape[1] # Gives number of columns
或者更简洁地说,
r, c = df.shape
找出数据帧中行数的另一种方法是pandas.Index.size,我认为这是最可读的变体。
请注意,正如我对公认答案的评论,
疑似pandas.Index.size实际上比len(df.Index)更快,但在我的计算机上告诉的是相反的情况(每个循环大约慢150 ns)。
我从R背景来到Pandas,我发现Pandas在选择行或列时更加复杂。
我不得不与它搏斗一段时间,然后我找到了一些应对方法:
获取列数:
len(df.columns)
## Here:
# df is your data.frame
# df.columns returns a string. It contains column's titles of the df.
# Then, "len()" gets the length of it.
获取行数:
len(df.index) # It's similar.
推荐文章
- 输入对象的datetime。Datetime没有Datetime属性
- numpy数组的Python内存使用情况
- NumPy或Pandas:保持数组类型为整数,同时具有NaN值
- 列表理解条件中的' elif '
- Python的“property”和“attribute”有什么区别?
- 在Python中格式化多行字典的正确方法是什么?
- 向异常添加信息?
- Sphinx autodoc不够自动
- 如何限制Django模型中数值字段的最大值?
- 访问对象内存地址
- 为什么在Python方法中需要显式地有“self”参数?
- 如何升级Windows 10下的Python安装?
- tqdm在Jupyter笔记本重复打印新的进度条
- 如何在for循环中注释类型?
- 将行名转换为第一列