如何获取panda数据帧df的行数?
当前回答
您也可以这样做:
假设df是您的数据帧。然后df.shape为您提供数据帧的形状,即(行,列)
因此,分配以下命令以获得所需的
row = df.shape[0], col = df.shape[1]
其他回答
对于数据帧df,可以使用以下任一项:
长度(df.索引)df.形状[0]df[df.columns[0]].count()(==第一列中非NaN值的数量)
再现绘图的代码:
import numpy as np
import pandas as pd
import perfplot
perfplot.save(
"out.png",
setup=lambda n: pd.DataFrame(np.arange(n * 3).reshape(n, 3)),
n_range=[2**k for k in range(25)],
kernels=[
lambda df: len(df.index),
lambda df: df.shape[0],
lambda df: df[df.columns[0]].count(),
],
labels=["len(df.index)", "df.shape[0]", "df[df.columns[0]].count()"],
xlabel="Number of rows",
)
使用len(df)或len(df.index)时,可能会遇到以下错误:
----> 4 df['id'] = np.arange(len(df.index)
TypeError: 'int' object is not callable
解决方案:
lengh = df.shape[0]
使用len(df):-)。
__len__()记录了“返回索引长度”。
计时信息,设置方式与root的答案相同:
In [7]: timeit len(df.index)
1000000 loops, best of 3: 248 ns per loop
In [8]: timeit len(df)
1000000 loops, best of 3: 573 ns per loop
由于有一个额外的函数调用,当然可以说它比直接调用len(df.index)慢一点。但在大多数情况下,这并不重要。我发现len(df)非常可读。
len(df.index)将是列出的所有方法中工作最快的
除了前面的答案之外,您还可以使用df.axes获取具有行和列索引的元组,然后使用len()函数:
total_rows = len(df.axes[0])
total_cols = len(df.axes[1])
推荐文章
- 如何删除Python中的前导空白?
- python中的assertEquals和assertEqual
- 如何保持Python打印不添加换行符或空格?
- 为什么Python的无穷散列中有π的数字?
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?