如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?
当前回答
使用Chrome 45.0.2454.85 m,递归似乎要快得多。
代码如下:
(function recursionVsForLoop(global) {
"use strict";
// Perf test
function perfTest() {}
perfTest.prototype.do = function(ns, fn) {
console.time(ns);
fn();
console.timeEnd(ns);
};
// Recursion method
(function recur() {
var count = 0;
global.recurFn = function recurFn(fn, cycles) {
fn();
count = count + 1;
if (count !== cycles) recurFn(fn, cycles);
};
})();
// Looped method
function loopFn(fn, cycles) {
for (var i = 0; i < cycles; i++) {
fn();
}
}
// Tests
var curTest = new perfTest(),
testsToRun = 100;
curTest.do('recursion', function() {
recurFn(function() {
console.log('a recur run.');
}, testsToRun);
});
curTest.do('loop', function() {
loopFn(function() {
console.log('a loop run.');
}, testsToRun);
});
})(window);
结果
//使用标准for循环运行100次
循环运行100x。 完成时间:7.683ms
//使用带有尾递归的函数递归方法运行100次
100x递归运行。 完成时间:4.841毫秒
在下面的截图中,当每次测试运行300次循环时,递归再次以更大的优势获胜
其他回答
递归的内存开销更大,因为每次递归调用通常都需要将一个内存地址推入堆栈,以便稍后程序可以返回到那个地址。
尽管如此,在许多情况下,递归比循环更自然、更可读——比如在处理树的时候。在这些情况下,我建议坚持使用递归。
递归和迭代取决于您想要实现的业务逻辑,尽管在大多数情况下可以互换使用。大多数开发人员选择递归,因为它更容易理解。
我将通过“归纳”设计一个Haskell数据结构来回答你的问题,这是递归的一种“对偶”。然后我会展示这种对偶性是如何带来好的结果的。
我们为简单树引入一个类型:
data Tree a = Branch (Tree a) (Tree a)
| Leaf a
deriving (Eq)
我们可以把这个定义理解为“一棵树是一个分支(包含两棵树)或一个叶子(包含一个数据值)”。叶结点是一种最小的情况。如果树不是叶子,那么它一定是包含两棵树的复合树。这些是唯一的例子。
让我们做一个树:
example :: Tree Int
example = Branch (Leaf 1)
(Branch (Leaf 2)
(Leaf 3))
现在,让我们假设我们想给树中的每个值加1。我们可以通过调用:
addOne :: Tree Int -> Tree Int
addOne (Branch a b) = Branch (addOne a) (addOne b)
addOne (Leaf a) = Leaf (a + 1)
首先,请注意这实际上是一个递归定义。它将数据构造函数Branch和Leaf作为case(因为Leaf是最小值的,这是唯一可能的case),我们可以确定函数将终止。
用迭代风格编写addOne需要什么?循环进入任意数量的分支会是什么样子?
此外,这种递归通常可以用“函子”来分解。我们可以通过定义将树变成函子:
instance Functor Tree where fmap f (Leaf a) = Leaf (f a)
fmap f (Branch a b) = Branch (fmap f a) (fmap f b)
和定义:
addOne' = fmap (+1)
我们可以提出其他递归方案,例如代数数据类型的变形(或折叠)。使用变形法,我们可以这样写:
addOne'' = cata go where
go (Leaf a) = Leaf (a + 1)
go (Branch a b) = Branch a b
我认为在(非尾)递归中,每当函数被调用时,分配一个新的堆栈等都会受到性能影响(当然取决于语言)。
这取决于“递归深度”。 这取决于函数调用开销对总执行时间的影响程度。
例如,用递归的方式计算经典阶乘是非常低效的,因为: —数据溢出风险 -栈溢出风险 —函数调用开销占执行时间的80%
同时开发一种最小-最大算法用于国际象棋游戏中的位置分析,该算法将分析后续的N步棋,可以在“分析深度”上以递归方式实现(正如我正在做的^_^)
推荐文章
- .NET反射的成本有多高?
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 在c#中检查字符串是否只包含数字的最快方法
- JavaScript变量声明在循环外还是循环内?
- 什么是ORM,它是如何工作的,我应该如何使用它?
- 我能在服务器端应用程序(PHP、Ruby、Python等)上读取URL的哈希部分吗?
- 多少个参数是太多?
- 为什么C语言这么快,为什么其他语言没有这么快或更快?
- String与StringBuilder
- 为什么引入无用的MOV指令会加速x86_64汇编中的紧循环?
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在SQL中有效地计数列值的发生?
- 使用curl在PHP中获取HTTP代码
- 确定PHP中是否存在数组键的更快更好的方法是什么?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?