如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?
当前回答
使用Chrome 45.0.2454.85 m,递归似乎要快得多。
代码如下:
(function recursionVsForLoop(global) {
"use strict";
// Perf test
function perfTest() {}
perfTest.prototype.do = function(ns, fn) {
console.time(ns);
fn();
console.timeEnd(ns);
};
// Recursion method
(function recur() {
var count = 0;
global.recurFn = function recurFn(fn, cycles) {
fn();
count = count + 1;
if (count !== cycles) recurFn(fn, cycles);
};
})();
// Looped method
function loopFn(fn, cycles) {
for (var i = 0; i < cycles; i++) {
fn();
}
}
// Tests
var curTest = new perfTest(),
testsToRun = 100;
curTest.do('recursion', function() {
recurFn(function() {
console.log('a recur run.');
}, testsToRun);
});
curTest.do('loop', function() {
loopFn(function() {
console.log('a loop run.');
}, testsToRun);
});
})(window);
结果
//使用标准for循环运行100次
循环运行100x。 完成时间:7.683ms
//使用带有尾递归的函数递归方法运行100次
100x递归运行。 完成时间:4.841毫秒
在下面的截图中,当每次测试运行300次循环时,递归再次以更大的优势获胜
其他回答
如果我们使用循环而不是 递归或者反之,在算法中两者都可以达到相同的目的?”
Usually yes if you are writing in a imperative language iteration will run faster than recursion, the performance hit is minimized in problems where the iterative solution requires manipulating Stacks and popping items off of a stack due to the recursive nature of the problem. There are a lot of times where the recursive implementation is much easier to read because the code is much shorter, so you do want to consider maintainability. Especailly in cases where the problem has a recursive nature. So take for example:
河内塔的递归实现:
def TowerOfHanoi(n , source, destination, auxiliary):
if n==1:
print ("Move disk 1 from source",source,"to destination",destination)
return
TowerOfHanoi(n-1, source, auxiliary, destination)
print ("Move disk",n,"from source",source,"to destination",destination)
TowerOfHanoi(n-1, auxiliary, destination, source)
相当短,很容易读。将其与对应的迭代TowerOfHanoi进行比较:
# Python3 program for iterative Tower of Hanoi
import sys
# A structure to represent a stack
class Stack:
# Constructor to set the data of
# the newly created tree node
def __init__(self, capacity):
self.capacity = capacity
self.top = -1
self.array = [0]*capacity
# function to create a stack of given capacity.
def createStack(capacity):
stack = Stack(capacity)
return stack
# Stack is full when top is equal to the last index
def isFull(stack):
return (stack.top == (stack.capacity - 1))
# Stack is empty when top is equal to -1
def isEmpty(stack):
return (stack.top == -1)
# Function to add an item to stack.
# It increases top by 1
def push(stack, item):
if(isFull(stack)):
return
stack.top+=1
stack.array[stack.top] = item
# Function to remove an item from stack.
# It decreases top by 1
def Pop(stack):
if(isEmpty(stack)):
return -sys.maxsize
Top = stack.top
stack.top-=1
return stack.array[Top]
# Function to implement legal
# movement between two poles
def moveDisksBetweenTwoPoles(src, dest, s, d):
pole1TopDisk = Pop(src)
pole2TopDisk = Pop(dest)
# When pole 1 is empty
if (pole1TopDisk == -sys.maxsize):
push(src, pole2TopDisk)
moveDisk(d, s, pole2TopDisk)
# When pole2 pole is empty
else if (pole2TopDisk == -sys.maxsize):
push(dest, pole1TopDisk)
moveDisk(s, d, pole1TopDisk)
# When top disk of pole1 > top disk of pole2
else if (pole1TopDisk > pole2TopDisk):
push(src, pole1TopDisk)
push(src, pole2TopDisk)
moveDisk(d, s, pole2TopDisk)
# When top disk of pole1 < top disk of pole2
else:
push(dest, pole2TopDisk)
push(dest, pole1TopDisk)
moveDisk(s, d, pole1TopDisk)
# Function to show the movement of disks
def moveDisk(fromPeg, toPeg, disk):
print("Move the disk", disk, "from '", fromPeg, "' to '", toPeg, "'")
# Function to implement TOH puzzle
def tohIterative(num_of_disks, src, aux, dest):
s, d, a = 'S', 'D', 'A'
# If number of disks is even, then interchange
# destination pole and auxiliary pole
if (num_of_disks % 2 == 0):
temp = d
d = a
a = temp
total_num_of_moves = int(pow(2, num_of_disks) - 1)
# Larger disks will be pushed first
for i in range(num_of_disks, 0, -1):
push(src, i)
for i in range(1, total_num_of_moves + 1):
if (i % 3 == 1):
moveDisksBetweenTwoPoles(src, dest, s, d)
else if (i % 3 == 2):
moveDisksBetweenTwoPoles(src, aux, s, a)
else if (i % 3 == 0):
moveDisksBetweenTwoPoles(aux, dest, a, d)
# Input: number of disks
num_of_disks = 3
# Create three stacks of size 'num_of_disks'
# to hold the disks
src = createStack(num_of_disks)
dest = createStack(num_of_disks)
aux = createStack(num_of_disks)
tohIterative(num_of_disks, src, aux, dest)
Now the first one is way easier to read because suprise suprise shorter code is usually easier to understand than code that is 10 times longer. Sometimes you want to ask yourself is the extra performance gain really worth it? The amount of hours wasted debugging the code. Is the iterative TowerOfHanoi faster than the Recursive TowerOfHanoi? Probably, but not by a big margin. Would I like to program Recursive problems like TowerOfHanoi using iteration? Hell no. Next we have another recursive function the Ackermann function: Using recursion:
if m == 0:
# BASE CASE
return n + 1
elif m > 0 and n == 0:
# RECURSIVE CASE
return ackermann(m - 1, 1)
elif m > 0 and n > 0:
# RECURSIVE CASE
return ackermann(m - 1, ackermann(m, n - 1))
使用迭代:
callStack = [{'m': 2, 'n': 3, 'indentation': 0, 'instrPtr': 'start'}]
returnValue = None
while len(callStack) != 0:
m = callStack[-1]['m']
n = callStack[-1]['n']
indentation = callStack[-1]['indentation']
instrPtr = callStack[-1]['instrPtr']
if instrPtr == 'start':
print('%sackermann(%s, %s)' % (' ' * indentation, m, n))
if m == 0:
# BASE CASE
returnValue = n + 1
callStack.pop()
continue
elif m > 0 and n == 0:
# RECURSIVE CASE
callStack[-1]['instrPtr'] = 'after first recursive case'
callStack.append({'m': m - 1, 'n': 1, 'indentation': indentation + 1, 'instrPtr': 'start'})
continue
elif m > 0 and n > 0:
# RECURSIVE CASE
callStack[-1]['instrPtr'] = 'after second recursive case, inner call'
callStack.append({'m': m, 'n': n - 1, 'indentation': indentation + 1, 'instrPtr': 'start'})
continue
elif instrPtr == 'after first recursive case':
returnValue = returnValue
callStack.pop()
continue
elif instrPtr == 'after second recursive case, inner call':
callStack[-1]['innerCallResult'] = returnValue
callStack[-1]['instrPtr'] = 'after second recursive case, outer call'
callStack.append({'m': m - 1, 'n': returnValue, 'indentation': indentation + 1, 'instrPtr': 'start'})
continue
elif instrPtr == 'after second recursive case, outer call':
returnValue = returnValue
callStack.pop()
continue
print(returnValue)
再说一次,递归实现更容易理解。所以我的结论是,如果问题本质上是递归的,需要操作堆栈中的项,就使用递归。
通常情况下,人们会期望性能损失在另一个方向上。递归调用会导致构建额外的堆栈帧;对此的惩罚各不相同。此外,在一些语言中,如Python(更准确地说,是在某些语言的某些实现中……),对于递归指定的任务,您可能很容易遇到堆栈限制,例如在树状数据结构中查找最大值。在这些情况下,你应该坚持使用循环。
编写好的递归函数可以在一定程度上降低性能损失,前提是你有一个优化尾部递归的编译器,等等(还要再次检查,确保函数真的是尾部递归——这是许多人都会犯的错误之一)。
除了“边缘”情况(高性能计算、非常大的递归深度等)之外,最好采用最清楚地表达您的意图、设计良好且可维护的方法。仅在确定需求后进行优化。
In C++ if the recursive function is a templated one, then the compiler has more chance to optimize it, as all the type deduction and function instantiations will occur in compile time. Modern compilers can also inline the function if possible. So if one uses optimization flags like -O3 or -O2 in g++, then recursions may have the chance to be faster than iterations. In iterative codes, the compiler gets less chance to optimize it, as it is already in the more or less optimal state (if written well enough).
在我的例子中,我试图通过使用Armadillo矩阵对象,以递归和迭代的方式来实现矩阵求幂。算法可以在这里找到…https://en.wikipedia.org/wiki/Exponentiation_by_squaring。 我的函数是模板化的,我已经计算了1,000,000个12x12矩阵的10次方。我得到了以下结果:
iterative + optimisation flag -O3 -> 2.79.. sec
recursive + optimisation flag -O3 -> 1.32.. sec
iterative + No-optimisation flag -> 2.83.. sec
recursive + No-optimisation flag -> 4.15.. sec
这些结果是使用gcc-4.8与c++11标志(-std=c++11)和Armadillo 6.1与Intel mkl获得的。英特尔编译器也显示了类似的结果。
递归和迭代取决于您想要实现的业务逻辑,尽管在大多数情况下可以互换使用。大多数开发人员选择递归,因为它更容易理解。
堆栈溢出只会发生在编程语言没有内置内存管理....否则,请确保在函数(或函数调用、STDLbs等)中有一些内容。如果没有递归,就不可能有这样的东西……谷歌或SQL,或任何地方一个人必须有效地排序大型数据结构(类)或数据库。
如果你想要遍历文件,递归是一种方法,我敢肯定这就是find * | ?grep *的工作方式。有点像双重递归,特别是管道(但不要像很多人那样做一堆系统调用,如果你要把它放在那里供别人使用的话)。
高级语言,甚至clang/cpp也可以在后台实现相同的功能。