我一直在研究。net反汇编和GCC源代码,但似乎在任何地方都找不到sin()和其他数学函数的实际实现…他们似乎总是在引用别的东西。

有人能帮我找到他们吗?我觉得不太可能运行C语言的所有硬件都支持三角函数,所以一定有软件算法,对吧?


我知道有几种方法可以计算函数,并且为了好玩,我写了自己的例程来使用泰勒级数计算函数。我很好奇生产语言是如何做到这一点的,因为我的所有实现总是慢几个数量级,尽管我认为我的算法非常聪明(显然不是)。


当前回答

像正弦和余弦这样的函数是在微处理器内部的微码中实现的。例如,英特尔芯片就有相应的组装指令。C编译器将生成调用这些汇编指令的代码。(相反,Java编译器不会。Java在软件而不是硬件中计算三角函数,因此运行速度要慢得多。)

芯片不使用泰勒级数来计算三角函数,至少不完全是这样。首先,他们使用CORDIC,但他们也可能使用一个短的泰勒级数来优化CORDIC的结果,或者用于特殊情况,例如在非常小的角度下以相对较高的精度计算正弦。有关更多解释,请参阅StackOverflow的回答。

其他回答

盲汉回答的改进版代码

#define EPSILON .0000000000001
// this is smallest effective threshold, at least on my OS (WSL ubuntu 18)
// possibly because factorial part turns 0 at some point
// and it happens faster then series element turns 0;
// validation was made against sin() from <math.h>
double ft_sin(double x)
{
    int k = 2;
    double r = x;
    double acc = 1;
    double den = 1;
    double num = x;

//  precision drops rapidly when x is not close to 0
//  so move x to 0 as close as possible
    while (x > PI)
        x -= PI;
    while (x < -PI)
        x += PI;
    if (x > PI / 2)
        return (ft_sin(PI - x));
    if (x < -PI / 2)
        return (ft_sin(-PI - x));
//  not using fabs for performance reasons
    while (acc > EPSILON || acc < -EPSILON)
    {
        num *= -x * x;
        den *= k * (k + 1);
        acc = num / den;
        r += acc;
        k += 2;
    }
    return (r);
}

如果您想查看这些函数在C语言中的实际GNU实现,请查看glibc的最新主干。参见GNU C库。

使用泰勒级数,试着找出级数项之间的关系这样你就不用一遍又一遍地计算了

下面是一个关于余窦的例子:

double cosinus(double x, double prec)
{
    double t, s ;
    int p;
    p = 0;
    s = 1.0;
    t = 1.0;
    while(fabs(t/s) > prec)
    {
        p++;
        t = (-t * x * x) / ((2 * p - 1) * (2 * p));
        s += t;
    }
    return s;
}

使用这个,我们可以得到新的和项使用已经使用的和项(我们避免阶乘和x2p)

OK kiddies, time for the pros.... This is one of my biggest complaints with inexperienced software engineers. They come in calculating transcendental functions from scratch (using Taylor's series) as if nobody had ever done these calculations before in their lives. Not true. This is a well defined problem and has been approached thousands of times by very clever software and hardware engineers and has a well defined solution. Basically, most of the transcendental functions use Chebyshev Polynomials to calculate them. As to which polynomials are used depends on the circumstances. First, the bible on this matter is a book called "Computer Approximations" by Hart and Cheney. In that book, you can decide if you have a hardware adder, multiplier, divider, etc, and decide which operations are fastest. e.g. If you had a really fast divider, the fastest way to calculate sine might be P1(x)/P2(x) where P1, P2 are Chebyshev polynomials. Without the fast divider, it might be just P(x), where P has much more terms than P1 or P2....so it'd be slower. So, first step is to determine your hardware and what it can do. Then you choose the appropriate combination of Chebyshev polynomials (is usually of the form cos(ax) = aP(x) for cosine for example, again where P is a Chebyshev polynomial). Then you decide what decimal precision you want. e.g. if you want 7 digits precision, you look that up in the appropriate table in the book I mentioned, and it will give you (for precision = 7.33) a number N = 4 and a polynomial number 3502. N is the order of the polynomial (so it's p4.x^4 + p3.x^3 + p2.x^2 + p1.x + p0), because N=4. Then you look up the actual value of the p4,p3,p2,p1,p0 values in the back of the book under 3502 (they'll be in floating point). Then you implement your algorithm in software in the form: (((p4.x + p3).x + p2).x + p1).x + p0 ....and this is how you'd calculate cosine to 7 decimal places on that hardware.

请注意,在FPU中大多数硬件实现的超越操作通常涉及一些微码和类似的操作(取决于硬件)。 切比雪夫多项式用于大多数先验多项式,但不是全部。例:使用Newton raphson方法的两次迭代,首先使用查询表,使用平方根更快。 同样,《计算机逼近》这本书会告诉你。

If you plan on implmementing these functions, I'd recommend to anyone that they get a copy of that book. It really is the bible for these kinds of algorithms. Note that there are bunches of alternative means for calculating these values like cordics, etc, but these tend to be best for specific algorithms where you only need low precision. To guarantee the precision every time, the chebyshev polynomials are the way to go. Like I said, well defined problem. Has been solved for 50 years now.....and thats how it's done.

Now, that being said, there are techniques whereby the Chebyshev polynomials can be used to get a single precision result with a low degree polynomial (like the example for cosine above). Then, there are other techniques to interpolate between values to increase the accuracy without having to go to a much larger polynomial, such as "Gal's Accurate Tables Method". This latter technique is what the post referring to the ACM literature is referring to. But ultimately, the Chebyshev Polynomials are what are used to get 90% of the way there.

享受。

它们通常在软件中实现,在大多数情况下不会使用相应的硬件(即汇编)调用。然而,正如Jason所指出的,这些是特定于实现的。

请注意,这些软件例程不是编译器源代码的一部分,而是可以在相应的库中找到,例如clib或GNU编译器的glibc。看到http://www.gnu.org/software/libc/manual/html_mono/libc.html三角函数

如果你想要更大的控制权,你应该仔细评估你到底需要什么。一些典型的方法是查找表的插值、程序集调用(通常很慢)或其他近似方案,如Newton-Raphson的平方根。