我一直在研究。net反汇编和GCC源代码,但似乎在任何地方都找不到sin()和其他数学函数的实际实现…他们似乎总是在引用别的东西。

有人能帮我找到他们吗?我觉得不太可能运行C语言的所有硬件都支持三角函数,所以一定有软件算法,对吧?


我知道有几种方法可以计算函数,并且为了好玩,我写了自己的例程来使用泰勒级数计算函数。我很好奇生产语言是如何做到这一点的,因为我的所有实现总是慢几个数量级,尽管我认为我的算法非常聪明(显然不是)。


当前回答

像正弦和余弦这样的函数是在微处理器内部的微码中实现的。例如,英特尔芯片就有相应的组装指令。C编译器将生成调用这些汇编指令的代码。(相反,Java编译器不会。Java在软件而不是硬件中计算三角函数,因此运行速度要慢得多。)

芯片不使用泰勒级数来计算三角函数,至少不完全是这样。首先,他们使用CORDIC,但他们也可能使用一个短的泰勒级数来优化CORDIC的结果,或者用于特殊情况,例如在非常小的角度下以相对较高的精度计算正弦。有关更多解释,请参阅StackOverflow的回答。

其他回答

如果你想要一个软件实现,而不是硬件实现,可以在《数值公式》的第5章中找到这个问题的明确答案。我的副本在一个盒子里,所以我不能给出细节,但简短的版本(如果我没记错的话)是你把tan(theta/2)作为你的基本操作,然后从那里计算其他的。计算是用级数近似完成的,但它比泰勒级数收敛得快得多。

抱歉,我没拿到书就想不起来了。

无论何时这样一个函数被求值,那么在某种程度上很可能有:

内插的值表(用于快速,不准确的应用程序-例如计算机图形) 收敛于期望值的级数的计算——可能不是泰勒级数,更可能是基于像克伦肖-柯蒂斯这样的奇异正交。

如果没有硬件支持,那么编译器可能会使用后一种方法,只发出汇编代码(没有调试符号),而不是使用c库——这让您在调试器中跟踪实际代码变得很棘手。

计算正弦/余弦/正切其实很容易通过代码使用泰勒级数来实现。自己写一个只需5秒钟。

整个过程可以用这个方程来概括:

下面是我为C语言写的一些例程:

double _pow(double a, double b) {
    double c = 1;
    for (int i=0; i<b; i++)
        c *= a;
    return c;
}

double _fact(double x) {
    double ret = 1;
    for (int i=1; i<=x; i++) 
        ret *= i;
    return ret;
}

double _sin(double x) {
    double y = x;
    double s = -1;
    for (int i=3; i<=100; i+=2) {
        y+=s*(_pow(x,i)/_fact(i));
        s *= -1;
    }  
    return y;
}
double _cos(double x) {
    double y = 1;
    double s = -1;
    for (int i=2; i<=100; i+=2) {
        y+=s*(_pow(x,i)/_fact(i));
        s *= -1;
    }  
    return y;
}
double _tan(double x) {
     return (_sin(x)/_cos(x));  
}

像正弦和余弦这样的函数是在微处理器内部的微码中实现的。例如,英特尔芯片就有相应的组装指令。C编译器将生成调用这些汇编指令的代码。(相反,Java编译器不会。Java在软件而不是硬件中计算三角函数,因此运行速度要慢得多。)

芯片不使用泰勒级数来计算三角函数,至少不完全是这样。首先,他们使用CORDIC,但他们也可能使用一个短的泰勒级数来优化CORDIC的结果,或者用于特殊情况,例如在非常小的角度下以相对较高的精度计算正弦。有关更多解释,请参阅StackOverflow的回答。

库函数的实际实现取决于特定的编译器和/或库提供程序。不管它是用硬件还是软件,不管它是不是泰勒展开,等等,都会有所不同。

我意识到这完全没有帮助。