我一直在研究。net反汇编和GCC源代码,但似乎在任何地方都找不到sin()和其他数学函数的实际实现…他们似乎总是在引用别的东西。

有人能帮我找到他们吗?我觉得不太可能运行C语言的所有硬件都支持三角函数,所以一定有软件算法,对吧?


我知道有几种方法可以计算函数,并且为了好玩,我写了自己的例程来使用泰勒级数计算函数。我很好奇生产语言是如何做到这一点的,因为我的所有实现总是慢几个数量级,尽管我认为我的算法非常聪明(显然不是)。


当前回答

它如何做到这一点的本质在于杰拉德·惠特利的《应用数值分析》节选:

当你的软件程序要求计算机获取一个值时 或者,你有没有想过它是如何得到 如果它能计算的最强大的函数是多项式? 它不会在表中查找这些并进行插值!相反, 计算机逼近除多项式以外的所有函数 一个多项式,可以精确地给出值。

上面要提到的几点是,一些算法实际上是从表中插值的,尽管只是在前几次迭代中。还要注意它是如何提到计算机利用近似多项式而没有指定哪种类型的近似多项式。正如本文中其他人指出的那样,在这种情况下,切比雪夫多项式比泰勒多项式更有效。

其他回答

对于罪恶,用泰勒展开可以得到

Sin (x) = x - x^3/3!+ x ^ 5/5 !- x ^ 7/7 !+……(1)

您将继续添加项,直到它们之间的差异低于可接受的容忍水平,或者只是有限的步数(更快,但不太精确)。举个例子:

float sin(float x)
{
  float res=0, pow=x, fact=1;
  for(int i=0; i<5; ++i)
  {
    res+=pow/fact;
    pow*=-1*x*x;
    fact*=(2*(i+1))*(2*(i+1)+1);
  }

  return res;
}

注:(1)适用于小角度的近似值sin(x)=x。对于更大的角度,你需要计算越来越多的项才能得到可接受的结果。 你可以使用while参数并继续,以达到一定的准确性:

double sin (double x){
    int i = 1;
    double cur = x;
    double acc = 1;
    double fact= 1;
    double pow = x;
    while (fabs(acc) > .00000001 &&   i < 100){
        fact *= ((2*i)*(2*i+1));
        pow *= -1 * x*x; 
        acc =  pow / fact;
        cur += acc;
        i++;
    }
    return cur;

}

它如何做到这一点的本质在于杰拉德·惠特利的《应用数值分析》节选:

当你的软件程序要求计算机获取一个值时 或者,你有没有想过它是如何得到 如果它能计算的最强大的函数是多项式? 它不会在表中查找这些并进行插值!相反, 计算机逼近除多项式以外的所有函数 一个多项式,可以精确地给出值。

上面要提到的几点是,一些算法实际上是从表中插值的,尽管只是在前几次迭代中。还要注意它是如何提到计算机利用近似多项式而没有指定哪种类型的近似多项式。正如本文中其他人指出的那样,在这种情况下,切比雪夫多项式比泰勒多项式更有效。

关于sin(), cos(),tan()这样的三角函数,在5年之后,没有提到高质量三角函数的一个重要方面:极差约简。

任何这些函数的早期步骤都是将角度(以弧度为单位)减小到2*π区间。但是π是无理数,所以像x =余数(x, 2*M_PI)这样的简单简化会引入误差,因为M_PI或机器pi是π的近似值。那么,如何求x =余数(x, 2*π)呢?

早期的库使用扩展精度或精心设计的编程来提供高质量的结果,但仍然在有限的double范围内。当请求一个较大的值,如sin(pow(2,30))时,结果是无意义的或0.0,并且可能将错误标志设置为TLOSS完全损失精度或PLOSS部分损失精度。

将大的值缩小到像-π到π这样的区间是一个具有挑战性的问题,它可以与基本三角函数(比如sin())本身的挑战相媲美。

一个好的报告是大论点的论据缩减:好到最后一位(1992)。它涵盖了这个问题很好:讨论了需要和事情是如何在各种平台(SPARC, PC, HP, 30+其他),并提供了一个解决方案算法,为所有双从-DBL_MAX到DBL_MAX的高质量结果。


如果原始参数以度为单位,但可能值很大,则首先使用fmod()以提高精度。一个好的fmod()将不会引入任何错误,从而提供出色的范围缩小。

// sin(degrees2radians(x))
sin(degrees2radians(fmod(x, 360.0))); // -360.0 < fmod(x,360) < +360.0

各种三角恒等式和remquo()提供了更多的改进。示例:信德()

库函数的实际实现取决于特定的编译器和/或库提供程序。不管它是用硬件还是软件,不管它是不是泰勒展开,等等,都会有所不同。

我意识到这完全没有帮助。

它们通常在软件中实现,在大多数情况下不会使用相应的硬件(即汇编)调用。然而,正如Jason所指出的,这些是特定于实现的。

请注意,这些软件例程不是编译器源代码的一部分,而是可以在相应的库中找到,例如clib或GNU编译器的glibc。看到http://www.gnu.org/software/libc/manual/html_mono/libc.html三角函数

如果你想要更大的控制权,你应该仔细评估你到底需要什么。一些典型的方法是查找表的插值、程序集调用(通常很慢)或其他近似方案,如Newton-Raphson的平方根。