我一直在研究。net反汇编和GCC源代码,但似乎在任何地方都找不到sin()和其他数学函数的实际实现…他们似乎总是在引用别的东西。

有人能帮我找到他们吗?我觉得不太可能运行C语言的所有硬件都支持三角函数,所以一定有软件算法,对吧?


我知道有几种方法可以计算函数,并且为了好玩,我写了自己的例程来使用泰勒级数计算函数。我很好奇生产语言是如何做到这一点的,因为我的所有实现总是慢几个数量级,尽管我认为我的算法非常聪明(显然不是)。


当前回答

它如何做到这一点的本质在于杰拉德·惠特利的《应用数值分析》节选:

当你的软件程序要求计算机获取一个值时 或者,你有没有想过它是如何得到 如果它能计算的最强大的函数是多项式? 它不会在表中查找这些并进行插值!相反, 计算机逼近除多项式以外的所有函数 一个多项式,可以精确地给出值。

上面要提到的几点是,一些算法实际上是从表中插值的,尽管只是在前几次迭代中。还要注意它是如何提到计算机利用近似多项式而没有指定哪种类型的近似多项式。正如本文中其他人指出的那样,在这种情况下,切比雪夫多项式比泰勒多项式更有效。

其他回答

这是一个复杂的问题。x86家族的类似intel的CPU有一个sin()函数的硬件实现,但它是x87 FPU的一部分,不再用于64位模式(使用SSE2寄存器代替)。在这种模式下,使用软件实现。

有几个这样的实现。一个在fdlibm中,在Java中使用。据我所知,glibc实现包含fdlibm的部分,以及IBM贡献的其他部分。

先验函数的软件实现,如sin(),通常使用多项式逼近,通常从泰勒级数获得。

对于罪恶,用泰勒展开可以得到

Sin (x) = x - x^3/3!+ x ^ 5/5 !- x ^ 7/7 !+……(1)

您将继续添加项,直到它们之间的差异低于可接受的容忍水平,或者只是有限的步数(更快,但不太精确)。举个例子:

float sin(float x)
{
  float res=0, pow=x, fact=1;
  for(int i=0; i<5; ++i)
  {
    res+=pow/fact;
    pow*=-1*x*x;
    fact*=(2*(i+1))*(2*(i+1)+1);
  }

  return res;
}

注:(1)适用于小角度的近似值sin(x)=x。对于更大的角度,你需要计算越来越多的项才能得到可接受的结果。 你可以使用while参数并继续,以达到一定的准确性:

double sin (double x){
    int i = 1;
    double cur = x;
    double acc = 1;
    double fact= 1;
    double pow = x;
    while (fabs(acc) > .00000001 &&   i < 100){
        fact *= ((2*i)*(2*i+1));
        pow *= -1 * x*x; 
        acc =  pow / fact;
        cur += acc;
        i++;
    }
    return cur;

}

库函数的实际实现取决于特定的编译器和/或库提供程序。不管它是用硬件还是软件,不管它是不是泰勒展开,等等,都会有所不同。

我意识到这完全没有帮助。

切比雪夫多项式,正如在另一个答案中提到的,是函数和多项式之间的最大差异尽可能小的多项式。这是一个很好的开始。

在某些情况下,最大误差不是你感兴趣的,而是最大相对误差。例如,对于正弦函数,x = 0附近的误差应该比较大的值小得多;你想要一个小的相对误差。所以你可以计算sinx / x的切比雪夫多项式,然后把这个多项式乘以x。

Next you have to figure out how to evaluate the polynomial. You want to evaluate it in such a way that the intermediate values are small and therefore rounding errors are small. Otherwise the rounding errors might become a lot larger than errors in the polynomial. And with functions like the sine function, if you are careless then it may be possible that the result that you calculate for sin x is greater than the result for sin y even when x < y. So careful choice of the calculation order and calculation of upper bounds for the rounding error are needed.

例如,sinx = x - x^3/6 + x^5 / 120 - x^7 / 5040…如果你天真地计算sinx = x * (1 - x^2/6 + x^4/120 - x^6/5040…),那么括号中的函数是递减的,如果y是x的下一个大的数字,那么有时siny会小于sinx。相反,计算sinx = x - x^3 * (1/6 - x^2/ 120 + x^4/5040…),这是不可能发生的。

例如,在计算切比雪夫多项式时,通常需要将系数四舍五入到双倍精度。但是,虽然切比雪夫多项式是最优的,但系数舍入为双精度的切比雪夫多项式并不是具有双精度系数的最优多项式!

For example for sin (x), where you need coefficients for x, x^3, x^5, x^7 etc. you do the following: Calculate the best approximation of sin x with a polynomial (ax + bx^3 + cx^5 + dx^7) with higher than double precision, then round a to double precision, giving A. The difference between a and A would be quite large. Now calculate the best approximation of (sin x - Ax) with a polynomial (b x^3 + cx^5 + dx^7). You get different coefficients, because they adapt to the difference between a and A. Round b to double precision B. Then approximate (sin x - Ax - Bx^3) with a polynomial cx^5 + dx^7 and so on. You will get a polynomial that is almost as good as the original Chebyshev polynomial, but much better than Chebyshev rounded to double precision.

Next you should take into account the rounding errors in the choice of polynomial. You found a polynomial with minimum error in the polynomial ignoring rounding error, but you want to optimise polynomial plus rounding error. Once you have the Chebyshev polynomial, you can calculate bounds for the rounding error. Say f (x) is your function, P (x) is the polynomial, and E (x) is the rounding error. You don't want to optimise | f (x) - P (x) |, you want to optimise | f (x) - P (x) +/- E (x) |. You will get a slightly different polynomial that tries to keep the polynomial errors down where the rounding error is large, and relaxes the polynomial errors a bit where the rounding error is small.

所有这些将使您轻松地获得最多0.55倍于最后一位的舍入误差,其中+,-,*,/的舍入误差最多为0.50倍于最后一位。

是的,也有计算罪恶的软件算法。基本上,用数字计算机计算这些东西通常是用数值方法来完成的,比如近似表示函数的泰勒级数。

数值方法可以将函数近似到任意精度,因为浮点数的精度是有限的,所以它们非常适合这些任务。