我一直在研究。net反汇编和GCC源代码,但似乎在任何地方都找不到sin()和其他数学函数的实际实现…他们似乎总是在引用别的东西。

有人能帮我找到他们吗?我觉得不太可能运行C语言的所有硬件都支持三角函数,所以一定有软件算法,对吧?


我知道有几种方法可以计算函数,并且为了好玩,我写了自己的例程来使用泰勒级数计算函数。我很好奇生产语言是如何做到这一点的,因为我的所有实现总是慢几个数量级,尽管我认为我的算法非常聪明(显然不是)。


当前回答

OK kiddies, time for the pros.... This is one of my biggest complaints with inexperienced software engineers. They come in calculating transcendental functions from scratch (using Taylor's series) as if nobody had ever done these calculations before in their lives. Not true. This is a well defined problem and has been approached thousands of times by very clever software and hardware engineers and has a well defined solution. Basically, most of the transcendental functions use Chebyshev Polynomials to calculate them. As to which polynomials are used depends on the circumstances. First, the bible on this matter is a book called "Computer Approximations" by Hart and Cheney. In that book, you can decide if you have a hardware adder, multiplier, divider, etc, and decide which operations are fastest. e.g. If you had a really fast divider, the fastest way to calculate sine might be P1(x)/P2(x) where P1, P2 are Chebyshev polynomials. Without the fast divider, it might be just P(x), where P has much more terms than P1 or P2....so it'd be slower. So, first step is to determine your hardware and what it can do. Then you choose the appropriate combination of Chebyshev polynomials (is usually of the form cos(ax) = aP(x) for cosine for example, again where P is a Chebyshev polynomial). Then you decide what decimal precision you want. e.g. if you want 7 digits precision, you look that up in the appropriate table in the book I mentioned, and it will give you (for precision = 7.33) a number N = 4 and a polynomial number 3502. N is the order of the polynomial (so it's p4.x^4 + p3.x^3 + p2.x^2 + p1.x + p0), because N=4. Then you look up the actual value of the p4,p3,p2,p1,p0 values in the back of the book under 3502 (they'll be in floating point). Then you implement your algorithm in software in the form: (((p4.x + p3).x + p2).x + p1).x + p0 ....and this is how you'd calculate cosine to 7 decimal places on that hardware.

请注意,在FPU中大多数硬件实现的超越操作通常涉及一些微码和类似的操作(取决于硬件)。 切比雪夫多项式用于大多数先验多项式,但不是全部。例:使用Newton raphson方法的两次迭代,首先使用查询表,使用平方根更快。 同样,《计算机逼近》这本书会告诉你。

If you plan on implmementing these functions, I'd recommend to anyone that they get a copy of that book. It really is the bible for these kinds of algorithms. Note that there are bunches of alternative means for calculating these values like cordics, etc, but these tend to be best for specific algorithms where you only need low precision. To guarantee the precision every time, the chebyshev polynomials are the way to go. Like I said, well defined problem. Has been solved for 50 years now.....and thats how it's done.

Now, that being said, there are techniques whereby the Chebyshev polynomials can be used to get a single precision result with a low degree polynomial (like the example for cosine above). Then, there are other techniques to interpolate between values to increase the accuracy without having to go to a much larger polynomial, such as "Gal's Accurate Tables Method". This latter technique is what the post referring to the ACM literature is referring to. But ultimately, the Chebyshev Polynomials are what are used to get 90% of the way there.

享受。

其他回答

如果你想犯罪

 __asm__ __volatile__("fsin" : "=t"(vsin) : "0"(xrads));

如果你想的话,因为

 __asm__ __volatile__("fcos" : "=t"(vcos) : "0"(xrads));

如果你想要根号方根

 __asm__ __volatile__("fsqrt" : "=t"(vsqrt) : "0"(value));

那么,既然机器指令可以做到,为什么还要使用不准确的代码呢?

OK kiddies, time for the pros.... This is one of my biggest complaints with inexperienced software engineers. They come in calculating transcendental functions from scratch (using Taylor's series) as if nobody had ever done these calculations before in their lives. Not true. This is a well defined problem and has been approached thousands of times by very clever software and hardware engineers and has a well defined solution. Basically, most of the transcendental functions use Chebyshev Polynomials to calculate them. As to which polynomials are used depends on the circumstances. First, the bible on this matter is a book called "Computer Approximations" by Hart and Cheney. In that book, you can decide if you have a hardware adder, multiplier, divider, etc, and decide which operations are fastest. e.g. If you had a really fast divider, the fastest way to calculate sine might be P1(x)/P2(x) where P1, P2 are Chebyshev polynomials. Without the fast divider, it might be just P(x), where P has much more terms than P1 or P2....so it'd be slower. So, first step is to determine your hardware and what it can do. Then you choose the appropriate combination of Chebyshev polynomials (is usually of the form cos(ax) = aP(x) for cosine for example, again where P is a Chebyshev polynomial). Then you decide what decimal precision you want. e.g. if you want 7 digits precision, you look that up in the appropriate table in the book I mentioned, and it will give you (for precision = 7.33) a number N = 4 and a polynomial number 3502. N is the order of the polynomial (so it's p4.x^4 + p3.x^3 + p2.x^2 + p1.x + p0), because N=4. Then you look up the actual value of the p4,p3,p2,p1,p0 values in the back of the book under 3502 (they'll be in floating point). Then you implement your algorithm in software in the form: (((p4.x + p3).x + p2).x + p1).x + p0 ....and this is how you'd calculate cosine to 7 decimal places on that hardware.

请注意,在FPU中大多数硬件实现的超越操作通常涉及一些微码和类似的操作(取决于硬件)。 切比雪夫多项式用于大多数先验多项式,但不是全部。例:使用Newton raphson方法的两次迭代,首先使用查询表,使用平方根更快。 同样,《计算机逼近》这本书会告诉你。

If you plan on implmementing these functions, I'd recommend to anyone that they get a copy of that book. It really is the bible for these kinds of algorithms. Note that there are bunches of alternative means for calculating these values like cordics, etc, but these tend to be best for specific algorithms where you only need low precision. To guarantee the precision every time, the chebyshev polynomials are the way to go. Like I said, well defined problem. Has been solved for 50 years now.....and thats how it's done.

Now, that being said, there are techniques whereby the Chebyshev polynomials can be used to get a single precision result with a low degree polynomial (like the example for cosine above). Then, there are other techniques to interpolate between values to increase the accuracy without having to go to a much larger polynomial, such as "Gal's Accurate Tables Method". This latter technique is what the post referring to the ACM literature is referring to. But ultimately, the Chebyshev Polynomials are what are used to get 90% of the way there.

享受。

是的,也有计算罪恶的软件算法。基本上,用数字计算机计算这些东西通常是用数值方法来完成的,比如近似表示函数的泰勒级数。

数值方法可以将函数近似到任意精度,因为浮点数的精度是有限的,所以它们非常适合这些任务。

对于罪恶,用泰勒展开可以得到

Sin (x) = x - x^3/3!+ x ^ 5/5 !- x ^ 7/7 !+……(1)

您将继续添加项,直到它们之间的差异低于可接受的容忍水平,或者只是有限的步数(更快,但不太精确)。举个例子:

float sin(float x)
{
  float res=0, pow=x, fact=1;
  for(int i=0; i<5; ++i)
  {
    res+=pow/fact;
    pow*=-1*x*x;
    fact*=(2*(i+1))*(2*(i+1)+1);
  }

  return res;
}

注:(1)适用于小角度的近似值sin(x)=x。对于更大的角度,你需要计算越来越多的项才能得到可接受的结果。 你可以使用while参数并继续,以达到一定的准确性:

double sin (double x){
    int i = 1;
    double cur = x;
    double acc = 1;
    double fact= 1;
    double pow = x;
    while (fabs(acc) > .00000001 &&   i < 100){
        fact *= ((2*i)*(2*i+1));
        pow *= -1 * x*x; 
        acc =  pow / fact;
        cur += acc;
        i++;
    }
    return cur;

}

它们通常在软件中实现,在大多数情况下不会使用相应的硬件(即汇编)调用。然而,正如Jason所指出的,这些是特定于实现的。

请注意,这些软件例程不是编译器源代码的一部分,而是可以在相应的库中找到,例如clib或GNU编译器的glibc。看到http://www.gnu.org/software/libc/manual/html_mono/libc.html三角函数

如果你想要更大的控制权,你应该仔细评估你到底需要什么。一些典型的方法是查找表的插值、程序集调用(通常很慢)或其他近似方案,如Newton-Raphson的平方根。