用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
当前回答
我已经实现了记忆所有计算权力的算法,然后在需要时使用它们。比如x^13等于(x^2)^2^2 * x^2 * x其中x^2^2是从表中取出来的而不是再计算一次。这基本上是@Pramod answer的实现(但在c#中)。 需要的乘法数是Ceil(Log n)
public static int Power(int base, int exp)
{
int tab[] = new int[exp + 1];
tab[0] = 1;
tab[1] = base;
return Power(base, exp, tab);
}
public static int Power(int base, int exp, int tab[])
{
if(exp == 0) return 1;
if(exp == 1) return base;
int i = 1;
while(i < exp/2)
{
if(tab[2 * i] <= 0)
tab[2 * i] = tab[i] * tab[i];
i = i << 1;
}
if(exp <= i)
return tab[i];
else return tab[i] * Power(base, exp - i, tab);
}
其他回答
我注意到gnu-GMP的标准指数平方算法有些奇怪:
我实现了两个几乎相同的函数——一个是幂模函数,使用最普通的二进制指数平方算法,
标签______2 ()
然后另一个基本相同的概念,但重新映射为每轮除以10,而不是除以2,
标签______10 ()
.
( time ( jot - 1456 9999999999 6671 | pvE0 |
gawk -Mbe '
function ______10(_, __, ___, ____, _____, _______) {
__ = +__
____ = (____+=_____=____^= \
(_ %=___=+___)<_)+____++^____—
while (__) {
if (_______= __%____) {
if (__==_______) {
return (_^__ *_____) %___
}
__-=_______
_____ = (_^_______*_____) %___
}
__/=____
_ = _^____%___
}
}
function ______2(_, __, ___, ____, _____) {
__=+__
____+=____=_____^=(_%=___=+___)<_
while (__) {
if (__ %____) {
if (__<____) {
return (_*_____) %___
}
_____ = (_____*_) %___
--__
}
__/=____
_= (_*_) %___
}
}
BEGIN {
OFMT = CONVFMT = "%.250g"
__ = (___=_^= FS=OFS= "=")(_<_)
_____ = __^(_=3)^--_ * ++_-(_+_)^_
______ = _^(_+_)-_ + _^!_
_______ = int(______*_____)
________ = 10 ^ 5 + 1
_________ = 8 ^ 4 * 2 - 1
}
GNU Awk 5.1.1, API: 3.1 (GNU MPFR 4.1.0, GNU MP 6.2.1)
.
($ + + NF = ______10(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“
out9: 48.4MiB 0:00:08 [6.02MiB/s] [6.02MiB/s] [ <=> ]
in0: 15.6MiB 0:00:08 [1.95MiB/s] [1.95MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )
8.31s user 0.06s system 103% cpu 8.058 total
ffa16aa937b7beca66a173ccbf8e1e12 stdin
($ + + NF = ______ 2(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“
out9: 48.4MiB 0:00:12 [3.78MiB/s] [3.78MiB/s] [<=> ]
in0: 15.6MiB 0:00:12 [1.22MiB/s] [1.22MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )
13.05s user 0.07s system 102% cpu 12.821 total
ffa16aa937b7beca66a173ccbf8e1e12 stdin
由于一些非常违反直觉和我不知道的原因,对于我投入的各种各样的输入,div-10变体几乎总是更快。这是两个哈希值之间的匹配,这让它真正令人困惑,尽管计算机显然没有内置在10进制的范例中。
我是否在代码/方法中遗漏了一些关键或明显的东西,可能会以令人困惑的方式歪曲结果?谢谢。
如果你想得到一个整数的2的幂,最好使用shift选项:
Pow(2,5)可以替换为1<<5
这样效率更高。
请注意,平方求幂并不是最优的方法。这可能是一种适用于所有指数值的通用方法,但对于特定的指数值,可能有更好的序列,需要更少的乘法。
例如,如果你想计算x^15,用平方求幂的方法会给你:
x^15 = (x^7)*(x^7)*x
x^7 = (x^3)*(x^3)*x
x^3 = x*x*x
这一共有6次乘法。
事实证明,这可以通过“仅仅”5次加法链幂运算来完成。
n*n = n^2
n^2*n = n^3
n^3*n^3 = n^6
n^6*n^6 = n^12
n^12*n^3 = n^15
没有有效的算法来找到这个最优的乘法序列。从维基百科:
The problem of finding the shortest addition chain cannot be solved by dynamic programming, because it does not satisfy the assumption of optimal substructure. That is, it is not sufficient to decompose the power into smaller powers, each of which is computed minimally, since the addition chains for the smaller powers may be related (to share computations). For example, in the shortest addition chain for a¹⁵ above, the subproblem for a⁶ must be computed as (a³)² since a³ is re-used (as opposed to, say, a⁶ = a²(a²)², which also requires three multiplies).
下面是一个计算x ** y的O(1)算法,灵感来自这条评论。它适用于32位有符号int。
对于较小的y值,它使用平方求幂。对于较大的y值,只有少数x值的结果不会溢出。这个实现使用一个查找表来读取结果而不进行计算。
对于溢出,C标准允许任何行为,包括崩溃。但是,我决定对LUT索引进行边界检查,以防止内存访问违反,这可能是令人惊讶和不受欢迎的。
伪代码:
If `x` is between -2 and 2, use special-case formulas.
Otherwise, if `y` is between 0 and 8, use special-case formulas.
Otherwise:
Set x = abs(x); remember if x was negative
If x <= 10 and y <= 19:
Load precomputed result from a lookup table
Otherwise:
Set result to 0 (overflow)
If x was negative and y is odd, negate the result
C代码:
#define POW9(x) x * x * x * x * x * x * x * x * x
#define POW10(x) POW9(x) * x
#define POW11(x) POW10(x) * x
#define POW12(x) POW11(x) * x
#define POW13(x) POW12(x) * x
#define POW14(x) POW13(x) * x
#define POW15(x) POW14(x) * x
#define POW16(x) POW15(x) * x
#define POW17(x) POW16(x) * x
#define POW18(x) POW17(x) * x
#define POW19(x) POW18(x) * x
int mypow(int x, unsigned y)
{
static int table[8][11] = {
{POW9(3), POW10(3), POW11(3), POW12(3), POW13(3), POW14(3), POW15(3), POW16(3), POW17(3), POW18(3), POW19(3)},
{POW9(4), POW10(4), POW11(4), POW12(4), POW13(4), POW14(4), POW15(4), 0, 0, 0, 0},
{POW9(5), POW10(5), POW11(5), POW12(5), POW13(5), 0, 0, 0, 0, 0, 0},
{POW9(6), POW10(6), POW11(6), 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(7), POW10(7), POW11(7), 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(8), POW10(8), 0, 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(9), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(10), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
};
int is_neg;
int r;
switch (x)
{
case 0:
return y == 0 ? 1 : 0;
case 1:
return 1;
case -1:
return y % 2 == 0 ? 1 : -1;
case 2:
return 1 << y;
case -2:
return (y % 2 == 0 ? 1 : -1) << y;
default:
switch (y)
{
case 0:
return 1;
case 1:
return x;
case 2:
return x * x;
case 3:
return x * x * x;
case 4:
r = x * x;
return r * r;
case 5:
r = x * x;
return r * r * x;
case 6:
r = x * x;
return r * r * r;
case 7:
r = x * x;
return r * r * r * x;
case 8:
r = x * x;
r = r * r;
return r * r;
default:
is_neg = x < 0;
if (is_neg)
x = -x;
if (x <= 10 && y <= 19)
r = table[x - 3][y - 9];
else
r = 0;
if (is_neg && y % 2 == 1)
r = -r;
return r;
}
}
}
平方求幂。
int ipow(int base, int exp)
{
int result = 1;
for (;;)
{
if (exp & 1)
result *= base;
exp >>= 1;
if (!exp)
break;
base *= base;
}
return result;
}
这是在非对称密码学中对大数进行模求幂的标准方法。