用C语言求一个整数的幂的最有效方法是什么?

// 2^3
pow(2,3) == 8

// 5^5
pow(5,5) == 3125

当前回答

一种非常特殊的情况是,当你需要2^(-x ^ y)时,其中x当然是负的y太大了,不能对int型进行移位。你仍然可以用浮点数在常数时间内完成2^x。

struct IeeeFloat
{

    unsigned int base : 23;
    unsigned int exponent : 8;
    unsigned int signBit : 1;
};


union IeeeFloatUnion
{
    IeeeFloat brokenOut;
    float f;
};

inline float twoToThe(char exponent)
{
    // notice how the range checking is already done on the exponent var 
    static IeeeFloatUnion u;
    u.f = 2.0;
    // Change the exponent part of the float
    u.brokenOut.exponent += (exponent - 1);
    return (u.f);
}

使用double作为基底类型,可以得到更多的2的幂。 (非常感谢评论者帮助整理这篇文章)。

还有一种可能性是,学习更多关于IEEE浮点数的知识,其他幂运算的特殊情况可能会出现。

其他回答

迟到的人:

下面是一个尽可能处理y < 0的解。

It uses a result of intmax_t for maximum range. There is no provision for answers that do not fit in intmax_t. powjii(0, 0) --> 1 which is a common result for this case. pow(0,negative), another undefined result, returns INTMAX_MAX intmax_t powjii(int x, int y) { if (y < 0) { switch (x) { case 0: return INTMAX_MAX; case 1: return 1; case -1: return y % 2 ? -1 : 1; } return 0; } intmax_t z = 1; intmax_t base = x; for (;;) { if (y % 2) { z *= base; } y /= 2; if (y == 0) { break; } base *= base; } return z; }

这段代码使用了一个永久循环for(;;),以避免在其他循环解决方案中常见的最终基数*=基数。这个乘法是1)不需要的,2)可能是int*int溢出,也就是UB。

平方求幂。

int ipow(int base, int exp)
{
    int result = 1;
    for (;;)
    {
        if (exp & 1)
            result *= base;
        exp >>= 1;
        if (!exp)
            break;
        base *= base;
    }

    return result;
}

这是在非对称密码学中对大数进行模求幂的标准方法。

这是对平方求幂效率的后续讨论。

这种方法的优点是它在log(n)时间内运行。例如,如果你要计算一个巨大的数,比如x^1048575(2^20 - 1),你只需要循环20次,而不是使用朴素方法的100万+次。

此外,在代码复杂性方面,它比试图找到最优的乘法序列更简单,这是la Pramod的建议。

编辑:

我想我应该在有人指责我可能会溢出之前澄清一下。这种方法假设您有某种巨大的int库。

如果你想得到一个整数的2的幂,最好使用shift选项:

Pow(2,5)可以替换为1<<5

这样效率更高。

我注意到gnu-GMP的标准指数平方算法有些奇怪:

我实现了两个几乎相同的函数——一个是幂模函数,使用最普通的二进制指数平方算法,

标签______2 ()

然后另一个基本相同的概念,但重新映射为每轮除以10,而不是除以2,

标签______10 ()

.

 ( time ( jot - 1456 9999999999 6671 | pvE0 | 

gawk -Mbe '
function ______10(_, __, ___, ____, _____, _______) {
      __ = +__
    ____ = (____+=_____=____^= \
           (_ %=___=+___)<_)+____++^____—

    while (__) {
        if (_______= __%____) {
            if (__==_______) {
                return (_^__ *_____) %___
            }
            __-=_______
            _____ = (_^_______*_____) %___
        }
        __/=____
        _ = _^____%___
    }
}
function ______2(_, __, ___, ____, _____) {
    __=+__
    ____+=____=_____^=(_%=___=+___)<_
    while (__) {
        if (__ %____) {
            if (__<____) {
                return (_*_____) %___
            }
            _____ = (_____*_) %___
            --__
        }
        __/=____
        _= (_*_) %___
    }
} 
BEGIN {
    OFMT = CONVFMT = "%.250g"

    __ = (___=_^= FS=OFS= "=")(_<_)

    _____ = __^(_=3)^--_ * ++_-(_+_)^_
    ______ = _^(_+_)-_ + _^!_

    _______ = int(______*_____)
    ________ = 10 ^ 5 + 1
    _________ = 8 ^ 4 * 2 - 1
}

GNU Awk 5.1.1, API: 3.1 (GNU MPFR 4.1.0, GNU MP 6.2.1)

.

($ + + NF = ______10(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“

     out9: 48.4MiB 0:00:08 [6.02MiB/s] [6.02MiB/s] [ <=> ]
      in0: 15.6MiB 0:00:08 [1.95MiB/s] [1.95MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )  

8.31s user 0.06s system 103% cpu 8.058 total
ffa16aa937b7beca66a173ccbf8e1e12  stdin

($ + + NF = ______ 2(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“

     out9: 48.4MiB 0:00:12 [3.78MiB/s] [3.78MiB/s] [<=> ]
      in0: 15.6MiB 0:00:12 [1.22MiB/s] [1.22MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )  

13.05s user 0.07s system 102% cpu 12.821 total
ffa16aa937b7beca66a173ccbf8e1e12  stdin

由于一些非常违反直觉和我不知道的原因,对于我投入的各种各样的输入,div-10变体几乎总是更快。这是两个哈希值之间的匹配,这让它真正令人困惑,尽管计算机显然没有内置在10进制的范例中。

我是否在代码/方法中遗漏了一些关键或明显的东西,可能会以令人困惑的方式歪曲结果?谢谢。