用C语言求一个整数的幂的最有效方法是什么?

// 2^3
pow(2,3) == 8

// 5^5
pow(5,5) == 3125

当前回答

一种非常特殊的情况是,当你需要2^(-x ^ y)时,其中x当然是负的y太大了,不能对int型进行移位。你仍然可以用浮点数在常数时间内完成2^x。

struct IeeeFloat
{

    unsigned int base : 23;
    unsigned int exponent : 8;
    unsigned int signBit : 1;
};


union IeeeFloatUnion
{
    IeeeFloat brokenOut;
    float f;
};

inline float twoToThe(char exponent)
{
    // notice how the range checking is already done on the exponent var 
    static IeeeFloatUnion u;
    u.f = 2.0;
    // Change the exponent part of the float
    u.brokenOut.exponent += (exponent - 1);
    return (u.f);
}

使用double作为基底类型,可以得到更多的2的幂。 (非常感谢评论者帮助整理这篇文章)。

还有一种可能性是,学习更多关于IEEE浮点数的知识,其他幂运算的特殊情况可能会出现。

其他回答

另一个实现(在Java中)。可能不是最有效的解决方案,但迭代次数与指数解相同。

public static long pow(long base, long exp){        
    if(exp ==0){
        return 1;
    }
    if(exp ==1){
        return base;
    }

    if(exp % 2 == 0){
        long half = pow(base, exp/2);
        return half * half;
    }else{
        long half = pow(base, (exp -1)/2);
        return base * half * half;
    }       
}

我注意到gnu-GMP的标准指数平方算法有些奇怪:

我实现了两个几乎相同的函数——一个是幂模函数,使用最普通的二进制指数平方算法,

标签______2 ()

然后另一个基本相同的概念,但重新映射为每轮除以10,而不是除以2,

标签______10 ()

.

 ( time ( jot - 1456 9999999999 6671 | pvE0 | 

gawk -Mbe '
function ______10(_, __, ___, ____, _____, _______) {
      __ = +__
    ____ = (____+=_____=____^= \
           (_ %=___=+___)<_)+____++^____—

    while (__) {
        if (_______= __%____) {
            if (__==_______) {
                return (_^__ *_____) %___
            }
            __-=_______
            _____ = (_^_______*_____) %___
        }
        __/=____
        _ = _^____%___
    }
}
function ______2(_, __, ___, ____, _____) {
    __=+__
    ____+=____=_____^=(_%=___=+___)<_
    while (__) {
        if (__ %____) {
            if (__<____) {
                return (_*_____) %___
            }
            _____ = (_____*_) %___
            --__
        }
        __/=____
        _= (_*_) %___
    }
} 
BEGIN {
    OFMT = CONVFMT = "%.250g"

    __ = (___=_^= FS=OFS= "=")(_<_)

    _____ = __^(_=3)^--_ * ++_-(_+_)^_
    ______ = _^(_+_)-_ + _^!_

    _______ = int(______*_____)
    ________ = 10 ^ 5 + 1
    _________ = 8 ^ 4 * 2 - 1
}

GNU Awk 5.1.1, API: 3.1 (GNU MPFR 4.1.0, GNU MP 6.2.1)

.

($ + + NF = ______10(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“

     out9: 48.4MiB 0:00:08 [6.02MiB/s] [6.02MiB/s] [ <=> ]
      in0: 15.6MiB 0:00:08 [1.95MiB/s] [1.95MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )  

8.31s user 0.06s system 103% cpu 8.058 total
ffa16aa937b7beca66a173ccbf8e1e12  stdin

($ + + NF = ______ 2(_ = ___美元,NR %________ +_________,_______*(_- 11))) ^ !___“

     out9: 48.4MiB 0:00:12 [3.78MiB/s] [3.78MiB/s] [<=> ]
      in0: 15.6MiB 0:00:12 [1.22MiB/s] [1.22MiB/s] [ <=> ]
( jot - 1456 9999999999 6671 | pvE 0.1 in0 | gawk -Mbe ; )  

13.05s user 0.07s system 102% cpu 12.821 total
ffa16aa937b7beca66a173ccbf8e1e12  stdin

由于一些非常违反直觉和我不知道的原因,对于我投入的各种各样的输入,div-10变体几乎总是更快。这是两个哈希值之间的匹配,这让它真正令人困惑,尽管计算机显然没有内置在10进制的范例中。

我是否在代码/方法中遗漏了一些关键或明显的东西,可能会以令人困惑的方式歪曲结果?谢谢。

迟到的人:

下面是一个尽可能处理y < 0的解。

It uses a result of intmax_t for maximum range. There is no provision for answers that do not fit in intmax_t. powjii(0, 0) --> 1 which is a common result for this case. pow(0,negative), another undefined result, returns INTMAX_MAX intmax_t powjii(int x, int y) { if (y < 0) { switch (x) { case 0: return INTMAX_MAX; case 1: return 1; case -1: return y % 2 ? -1 : 1; } return 0; } intmax_t z = 1; intmax_t base = x; for (;;) { if (y % 2) { z *= base; } y /= 2; if (y == 0) { break; } base *= base; } return z; }

这段代码使用了一个永久循环for(;;),以避免在其他循环解决方案中常见的最终基数*=基数。这个乘法是1)不需要的,2)可能是int*int溢出,也就是UB。

我的情况有点不同,我试图用一种力量创造一个面具,但我想无论如何我都要分享我找到的解决方案。

显然,它只适用于2的幂。

Mask1 = 1 << (Exponent - 1);
Mask2 = Mask1 - 1;
return Mask1 + Mask2;

我用递归,如果exp是偶数,5^10 =25^5。

int pow(float base,float exp){
   if (exp==0)return 1;
   else if(exp>0&&exp%2==0){
      return pow(base*base,exp/2);
   }else if (exp>0&&exp%2!=0){
      return base*pow(base,exp-1);
   }
}