用C语言求一个整数的幂的最有效方法是什么?

// 2^3
pow(2,3) == 8

// 5^5
pow(5,5) == 3125

当前回答

这是对平方求幂效率的后续讨论。

这种方法的优点是它在log(n)时间内运行。例如,如果你要计算一个巨大的数,比如x^1048575(2^20 - 1),你只需要循环20次,而不是使用朴素方法的100万+次。

此外,在代码复杂性方面,它比试图找到最优的乘法序列更简单,这是la Pramod的建议。

编辑:

我想我应该在有人指责我可能会溢出之前澄清一下。这种方法假设您有某种巨大的int库。

其他回答

一种非常特殊的情况是,当你需要2^(-x ^ y)时,其中x当然是负的y太大了,不能对int型进行移位。你仍然可以用浮点数在常数时间内完成2^x。

struct IeeeFloat
{

    unsigned int base : 23;
    unsigned int exponent : 8;
    unsigned int signBit : 1;
};


union IeeeFloatUnion
{
    IeeeFloat brokenOut;
    float f;
};

inline float twoToThe(char exponent)
{
    // notice how the range checking is already done on the exponent var 
    static IeeeFloatUnion u;
    u.f = 2.0;
    // Change the exponent part of the float
    u.brokenOut.exponent += (exponent - 1);
    return (u.f);
}

使用double作为基底类型,可以得到更多的2的幂。 (非常感谢评论者帮助整理这篇文章)。

还有一种可能性是,学习更多关于IEEE浮点数的知识,其他幂运算的特殊情况可能会出现。

另一个实现(在Java中)。可能不是最有效的解决方案,但迭代次数与指数解相同。

public static long pow(long base, long exp){        
    if(exp ==0){
        return 1;
    }
    if(exp ==1){
        return base;
    }

    if(exp % 2 == 0){
        long half = pow(base, exp/2);
        return half * half;
    }else{
        long half = pow(base, (exp -1)/2);
        return base * half * half;
    }       
}

O(log N)的解决方案在Swift…

// Time complexity is O(log N)
func power(_ base: Int, _ exp: Int) -> Int { 

    // 1. If the exponent is 1 then return the number (e.g a^1 == a)
    //Time complexity O(1)
    if exp == 1 { 
        return base
    }

    // 2. Calculate the value of the number raised to half of the exponent. This will be used to calculate the final answer by squaring the result (e.g a^2n == (a^n)^2 == a^n * a^n). The idea is that we can do half the amount of work by obtaining a^n and multiplying the result by itself to get a^2n
    //Time complexity O(log N)
    let tempVal = power(base, exp/2) 

    // 3. If the exponent was odd then decompose the result in such a way that it allows you to divide the exponent in two (e.g. a^(2n+1) == a^1 * a^2n == a^1 * a^n * a^n). If the eponent is even then the result must be the base raised to half the exponent squared (e.g. a^2n == a^n * a^n = (a^n)^2).
    //Time complexity O(1)
    return (exp % 2 == 1 ? base : 1) * tempVal * tempVal 

}

我用递归,如果exp是偶数,5^10 =25^5。

int pow(float base,float exp){
   if (exp==0)return 1;
   else if(exp>0&&exp%2==0){
      return pow(base*base,exp/2);
   }else if (exp>0&&exp%2!=0){
      return base*pow(base,exp-1);
   }
}

平方求幂。

int ipow(int base, int exp)
{
    int result = 1;
    for (;;)
    {
        if (exp & 1)
            result *= base;
        exp >>= 1;
        if (!exp)
            break;
        base *= base;
    }

    return result;
}

这是在非对称密码学中对大数进行模求幂的标准方法。