用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
当前回答
这是对平方求幂效率的后续讨论。
这种方法的优点是它在log(n)时间内运行。例如,如果你要计算一个巨大的数,比如x^1048575(2^20 - 1),你只需要循环20次,而不是使用朴素方法的100万+次。
此外,在代码复杂性方面,它比试图找到最优的乘法序列更简单,这是la Pramod的建议。
编辑:
我想我应该在有人指责我可能会溢出之前澄清一下。这种方法假设您有某种巨大的int库。
其他回答
我的情况有点不同,我试图用一种力量创造一个面具,但我想无论如何我都要分享我找到的解决方案。
显然,它只适用于2的幂。
Mask1 = 1 << (Exponent - 1);
Mask2 = Mask1 - 1;
return Mask1 + Mask2;
如果要取2的a次方。最快的方法是按幂位移位。
2 ** 3 == 1 << 3 == 8
2 ** 30 == 1 << 30 == 1073741824 (A Gigabyte)
如果你想得到一个整数的2的幂,最好使用shift选项:
Pow(2,5)可以替换为1<<5
这样效率更高。
这是对平方求幂效率的后续讨论。
这种方法的优点是它在log(n)时间内运行。例如,如果你要计算一个巨大的数,比如x^1048575(2^20 - 1),你只需要循环20次,而不是使用朴素方法的100万+次。
此外,在代码复杂性方面,它比试图找到最优的乘法序列更简单,这是la Pramod的建议。
编辑:
我想我应该在有人指责我可能会溢出之前澄清一下。这种方法假设您有某种巨大的int库。
除了Elias的答案,当使用有符号整数实现时,会导致未定义行为,当使用无符号整数实现时,会导致高输入的不正确值,
下面是平方求幂的修改版本,它也适用于有符号整数类型,并且不会给出错误的值:
#include <stdint.h>
#define SQRT_INT64_MAX (INT64_C(0xB504F333))
int64_t alx_pow_s64 (int64_t base, uint8_t exp)
{
int_fast64_t base_;
int_fast64_t result;
base_ = base;
if (base_ == 1)
return 1;
if (!exp)
return 1;
if (!base_)
return 0;
result = 1;
if (exp & 1)
result *= base_;
exp >>= 1;
while (exp) {
if (base_ > SQRT_INT64_MAX)
return 0;
base_ *= base_;
if (exp & 1)
result *= base_;
exp >>= 1;
}
return result;
}
使用该函数的注意事项:
(1 ** N) == 1
(N ** 0) == 1
(0 ** 0) == 1
(0 ** N) == 0
如果将发生任何溢出或换行,则返回0;
I used int64_t, but any width (signed or unsigned) can be used with little modification. However, if you need to use a non-fixed-width integer type, you will need to change SQRT_INT64_MAX by (int)sqrt(INT_MAX) (in the case of using int) or something similar, which should be optimized, but it is uglier, and not a C constant expression. Also casting the result of sqrt() to an int is not very good because of floating point precission in case of a perfect square, but as I don't know of any implementation where INT_MAX -or the maximum of any type- is a perfect square, you can live with that.