用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
当前回答
另一个实现(在Java中)。可能不是最有效的解决方案,但迭代次数与指数解相同。
public static long pow(long base, long exp){
if(exp ==0){
return 1;
}
if(exp ==1){
return base;
}
if(exp % 2 == 0){
long half = pow(base, exp/2);
return half * half;
}else{
long half = pow(base, (exp -1)/2);
return base * half * half;
}
}
其他回答
int pow( int base, int exponent)
{ // Does not work for negative exponents. (But that would be leaving the range of int)
if (exponent == 0) return 1; // base case;
int temp = pow(base, exponent/2);
if (exponent % 2 == 0)
return temp * temp;
else
return (base * temp * temp);
}
下面是Java中的方法
private int ipow(int base, int exp)
{
int result = 1;
while (exp != 0)
{
if ((exp & 1) == 1)
result *= base;
exp >>= 1;
base *= base;
}
return result;
}
更一般的解决方案考虑负指数
private static int pow(int base, int exponent) {
int result = 1;
if (exponent == 0)
return result; // base case;
if (exponent < 0)
return 1 / pow(base, -exponent);
int temp = pow(base, exponent / 2);
if (exponent % 2 == 0)
return temp * temp;
else
return (base * temp * temp);
}
迟到的人:
下面是一个尽可能处理y < 0的解。
It uses a result of intmax_t for maximum range. There is no provision for answers that do not fit in intmax_t. powjii(0, 0) --> 1 which is a common result for this case. pow(0,negative), another undefined result, returns INTMAX_MAX intmax_t powjii(int x, int y) { if (y < 0) { switch (x) { case 0: return INTMAX_MAX; case 1: return 1; case -1: return y % 2 ? -1 : 1; } return 0; } intmax_t z = 1; intmax_t base = x; for (;;) { if (y % 2) { z *= base; } y /= 2; if (y == 0) { break; } base *= base; } return z; }
这段代码使用了一个永久循环for(;;),以避免在其他循环解决方案中常见的最终基数*=基数。这个乘法是1)不需要的,2)可能是int*int溢出,也就是UB。
请注意,平方求幂并不是最优的方法。这可能是一种适用于所有指数值的通用方法,但对于特定的指数值,可能有更好的序列,需要更少的乘法。
例如,如果你想计算x^15,用平方求幂的方法会给你:
x^15 = (x^7)*(x^7)*x
x^7 = (x^3)*(x^3)*x
x^3 = x*x*x
这一共有6次乘法。
事实证明,这可以通过“仅仅”5次加法链幂运算来完成。
n*n = n^2
n^2*n = n^3
n^3*n^3 = n^6
n^6*n^6 = n^12
n^12*n^3 = n^15
没有有效的算法来找到这个最优的乘法序列。从维基百科:
The problem of finding the shortest addition chain cannot be solved by dynamic programming, because it does not satisfy the assumption of optimal substructure. That is, it is not sufficient to decompose the power into smaller powers, each of which is computed minimally, since the addition chains for the smaller powers may be related (to share computations). For example, in the shortest addition chain for a¹⁵ above, the subproblem for a⁶ must be computed as (a³)² since a³ is re-used (as opposed to, say, a⁶ = a²(a²)², which also requires three multiplies).