用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
当前回答
如果您在编译时知道指数(并且它是一个整数),您可以使用模板展开循环。这可以更有效,但我想在这里演示基本原则:
#include <iostream>
template<unsigned long N>
unsigned long inline exp_unroll(unsigned base) {
return base * exp_unroll<N-1>(base);
}
我们使用模板特化来终止递归:
template<>
unsigned long inline exp_unroll<1>(unsigned base) {
return base;
}
指数需要在运行时已知,
int main(int argc, char * argv[]) {
std::cout << argv[1] <<"**5= " << exp_unroll<5>(atoi(argv[1])) << ;std::endl;
}
其他回答
下面是Java中的方法
private int ipow(int base, int exp)
{
int result = 1;
while (exp != 0)
{
if ((exp & 1) == 1)
result *= base;
exp >>= 1;
base *= base;
}
return result;
}
power()函数只适用于整数
int power(int base, unsigned int exp){
if (exp == 0)
return 1;
int temp = power(base, exp/2);
if (exp%2 == 0)
return temp*temp;
else
return base*temp*temp;
}
复杂度= O(exp)
Power()函数为负exp和浮点基数工作。
float power(float base, int exp) {
if( exp == 0)
return 1;
float temp = power(base, exp/2);
if (exp%2 == 0)
return temp*temp;
else {
if(exp > 0)
return base*temp*temp;
else
return (temp*temp)/base; //negative exponent computation
}
}
复杂度= O(exp)
int pow(int const x, unsigned const e) noexcept
{
return !e ? 1 : 1 == e ? x : (e % 2 ? x : 1) * pow(x * x, e / 2);
//return !e ? 1 : 1 == e ? x : (((x ^ 1) & -(e % 2)) ^ 1) * pow(x * x, e / 2);
}
是的,它是递归的,但是一个好的优化编译器会优化递归。
平方求幂。
int ipow(int base, int exp)
{
int result = 1;
for (;;)
{
if (exp & 1)
result *= base;
exp >>= 1;
if (!exp)
break;
base *= base;
}
return result;
}
这是在非对称密码学中对大数进行模求幂的标准方法。
我用递归,如果exp是偶数,5^10 =25^5。
int pow(float base,float exp){
if (exp==0)return 1;
else if(exp>0&&exp%2==0){
return pow(base*base,exp/2);
}else if (exp>0&&exp%2!=0){
return base*pow(base,exp-1);
}
}