用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
用C语言求一个整数的幂的最有效方法是什么?
// 2^3
pow(2,3) == 8
// 5^5
pow(5,5) == 3125
当前回答
下面是一个计算x ** y的O(1)算法,灵感来自这条评论。它适用于32位有符号int。
对于较小的y值,它使用平方求幂。对于较大的y值,只有少数x值的结果不会溢出。这个实现使用一个查找表来读取结果而不进行计算。
对于溢出,C标准允许任何行为,包括崩溃。但是,我决定对LUT索引进行边界检查,以防止内存访问违反,这可能是令人惊讶和不受欢迎的。
伪代码:
If `x` is between -2 and 2, use special-case formulas.
Otherwise, if `y` is between 0 and 8, use special-case formulas.
Otherwise:
Set x = abs(x); remember if x was negative
If x <= 10 and y <= 19:
Load precomputed result from a lookup table
Otherwise:
Set result to 0 (overflow)
If x was negative and y is odd, negate the result
C代码:
#define POW9(x) x * x * x * x * x * x * x * x * x
#define POW10(x) POW9(x) * x
#define POW11(x) POW10(x) * x
#define POW12(x) POW11(x) * x
#define POW13(x) POW12(x) * x
#define POW14(x) POW13(x) * x
#define POW15(x) POW14(x) * x
#define POW16(x) POW15(x) * x
#define POW17(x) POW16(x) * x
#define POW18(x) POW17(x) * x
#define POW19(x) POW18(x) * x
int mypow(int x, unsigned y)
{
static int table[8][11] = {
{POW9(3), POW10(3), POW11(3), POW12(3), POW13(3), POW14(3), POW15(3), POW16(3), POW17(3), POW18(3), POW19(3)},
{POW9(4), POW10(4), POW11(4), POW12(4), POW13(4), POW14(4), POW15(4), 0, 0, 0, 0},
{POW9(5), POW10(5), POW11(5), POW12(5), POW13(5), 0, 0, 0, 0, 0, 0},
{POW9(6), POW10(6), POW11(6), 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(7), POW10(7), POW11(7), 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(8), POW10(8), 0, 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(9), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{POW9(10), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
};
int is_neg;
int r;
switch (x)
{
case 0:
return y == 0 ? 1 : 0;
case 1:
return 1;
case -1:
return y % 2 == 0 ? 1 : -1;
case 2:
return 1 << y;
case -2:
return (y % 2 == 0 ? 1 : -1) << y;
default:
switch (y)
{
case 0:
return 1;
case 1:
return x;
case 2:
return x * x;
case 3:
return x * x * x;
case 4:
r = x * x;
return r * r;
case 5:
r = x * x;
return r * r * x;
case 6:
r = x * x;
return r * r * r;
case 7:
r = x * x;
return r * r * r * x;
case 8:
r = x * x;
r = r * r;
return r * r;
default:
is_neg = x < 0;
if (is_neg)
x = -x;
if (x <= 10 && y <= 19)
r = table[x - 3][y - 9];
else
r = 0;
if (is_neg && y % 2 == 1)
r = -r;
return r;
}
}
}
其他回答
如果您在编译时知道指数(并且它是一个整数),您可以使用模板展开循环。这可以更有效,但我想在这里演示基本原则:
#include <iostream>
template<unsigned long N>
unsigned long inline exp_unroll(unsigned base) {
return base * exp_unroll<N-1>(base);
}
我们使用模板特化来终止递归:
template<>
unsigned long inline exp_unroll<1>(unsigned base) {
return base;
}
指数需要在运行时已知,
int main(int argc, char * argv[]) {
std::cout << argv[1] <<"**5= " << exp_unroll<5>(atoi(argv[1])) << ;std::endl;
}
一种非常特殊的情况是,当你需要2^(-x ^ y)时,其中x当然是负的y太大了,不能对int型进行移位。你仍然可以用浮点数在常数时间内完成2^x。
struct IeeeFloat
{
unsigned int base : 23;
unsigned int exponent : 8;
unsigned int signBit : 1;
};
union IeeeFloatUnion
{
IeeeFloat brokenOut;
float f;
};
inline float twoToThe(char exponent)
{
// notice how the range checking is already done on the exponent var
static IeeeFloatUnion u;
u.f = 2.0;
// Change the exponent part of the float
u.brokenOut.exponent += (exponent - 1);
return (u.f);
}
使用double作为基底类型,可以得到更多的2的幂。 (非常感谢评论者帮助整理这篇文章)。
还有一种可能性是,学习更多关于IEEE浮点数的知识,其他幂运算的特殊情况可能会出现。
平方求幂。
int ipow(int base, int exp)
{
int result = 1;
for (;;)
{
if (exp & 1)
result *= base;
exp >>= 1;
if (!exp)
break;
base *= base;
}
return result;
}
这是在非对称密码学中对大数进行模求幂的标准方法。
int pow( int base, int exponent)
{ // Does not work for negative exponents. (But that would be leaving the range of int)
if (exponent == 0) return 1; // base case;
int temp = pow(base, exponent/2);
if (exponent % 2 == 0)
return temp * temp;
else
return (base * temp * temp);
}
请注意,平方求幂并不是最优的方法。这可能是一种适用于所有指数值的通用方法,但对于特定的指数值,可能有更好的序列,需要更少的乘法。
例如,如果你想计算x^15,用平方求幂的方法会给你:
x^15 = (x^7)*(x^7)*x
x^7 = (x^3)*(x^3)*x
x^3 = x*x*x
这一共有6次乘法。
事实证明,这可以通过“仅仅”5次加法链幂运算来完成。
n*n = n^2
n^2*n = n^3
n^3*n^3 = n^6
n^6*n^6 = n^12
n^12*n^3 = n^15
没有有效的算法来找到这个最优的乘法序列。从维基百科:
The problem of finding the shortest addition chain cannot be solved by dynamic programming, because it does not satisfy the assumption of optimal substructure. That is, it is not sufficient to decompose the power into smaller powers, each of which is computed minimally, since the addition chains for the smaller powers may be related (to share computations). For example, in the shortest addition chain for a¹⁵ above, the subproblem for a⁶ must be computed as (a³)² since a³ is re-used (as opposed to, say, a⁶ = a²(a²)², which also requires three multiplies).