在Python中,给定一个项目,如何在列表中计算它的出现次数?


一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。


当前回答

sum([1 for elem in <yourlist> if elem==<your_value>])

这将返回值的出现次数

其他回答

还可以使用内置模块运算符的countOf方法。

>>> import operator
>>> operator.countOf([1, 2, 3, 4, 1, 4, 1], 1)
3

统计列表中一项的出现次数

为了只计算一个列表项的出现次数,可以使用count()

>>> l = ["a","b","b"]
>>> l.count("a")
1
>>> l.count("b")
2

计算列表中所有项目的出现次数也称为“清点”列表,或创建清点计数器。

使用count()计算所有项目

要计算l中项目的出现次数,只需使用列表理解和count()方法

[[x,l.count(x)] for x in set(l)]

(或类似于集合(l)中x的字典字典((x,l.count(x))))

例子:

>>> l = ["a","b","b"]
>>> [[x,l.count(x)] for x in set(l)]
[['a', 1], ['b', 2]]
>>> dict((x,l.count(x)) for x in set(l))
{'a': 1, 'b': 2}

使用Counter()计数所有项目

或者,集合库中有更快的Counter类

Counter(l)

例子:

>>> l = ["a","b","b"]
>>> from collections import Counter
>>> Counter(l)
Counter({'b': 2, 'a': 1})

计数器快多少?

我查了一下柜台清点清单的速度有多快。我尝试了两种方法,使用了几个n值,计数器的速度似乎快了大约2倍。

以下是我使用的脚本:

from __future__ import print_function
import timeit

t1=timeit.Timer('Counter(l)', \
                'import random;import string;from collections import Counter;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
                )

t2=timeit.Timer('[[x,l.count(x)] for x in set(l)]',
                'import random;import string;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
                )

print("Counter(): ", t1.repeat(repeat=3,number=10000))
print("count():   ", t2.repeat(repeat=3,number=10000)

输出:

Counter():  [0.46062711701961234, 0.4022796869976446, 0.3974247490405105]
count():    [7.779430688009597, 7.962715800967999, 8.420845870045014]

建议使用numpy的bincount,但它只适用于具有非负整数的1d数组。此外,生成的数组可能会令人困惑(它包含原始列表中从最小值到最大值的整数,并将缺失的整数设置为0)。

使用numpy的更好方法是使用属性return_counts设置为True的唯一函数。它返回一个元组,其中包含一个唯一值数组和每个唯一值的出现数组。

# a = [1, 1, 0, 2, 1, 0, 3, 3]
a_uniq, counts = np.unique(a, return_counts=True)  # array([0, 1, 2, 3]), array([2, 3, 1, 2]

然后我们可以将它们配对为

dict(zip(a_uniq, counts))  # {0: 2, 1: 3, 2: 1, 3: 2}

它也适用于其他数据类型和“2d列表”,例如。

>>> a = [['a', 'b', 'b', 'b'], ['a', 'c', 'c', 'a']]
>>> dict(zip(*np.unique(a, return_counts=True)))
{'a': 3, 'b': 3, 'c': 2}

以下是三种解决方案:

Fastest是使用for循环并将其存储在Dict中。

import time
from collections import Counter


def countElement(a):
    g = {}
    for i in a:
        if i in g: 
            g[i] +=1
        else: 
            g[i] =1
    return g


z = [1,1,1,1,2,2,2,2,3,3,4,5,5,234,23,3,12,3,123,12,31,23,13,2,4,23,42,42,34,234,23,42,34,23,423,42,34,23,423,4,234,23,42,34,23,4,23,423,4,23,4]


#Solution 1 - Faster
st = time.monotonic()
for i in range(1000000):
    b = countElement(z)
et = time.monotonic()
print(b)
print('Simple for loop and storing it in dict - Duration: {}'.format(et - st))

#Solution 2 - Fast
st = time.monotonic()
for i in range(1000000):
    a = Counter(z)
et = time.monotonic()
print (a)
print('Using collections.Counter - Duration: {}'.format(et - st))

#Solution 3 - Slow
st = time.monotonic()
for i in range(1000000):
    g = dict([(i, z.count(i)) for i in set(z)])
et = time.monotonic()
print(g)
print('Using list comprehension - Duration: {}'.format(et - st))

后果

#解决方案1-更快

{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 234: 3, 23: 10, 12: 2, 123: 1, 31: 1, 13: 1, 42: 5, 34: 4, 423: 3}
Simple for loop and storing it in dict - Duration: 12.032000000000153

#解决方案2-快速

Counter({23: 10, 4: 6, 2: 5, 42: 5, 1: 4, 3: 4, 34: 4, 234: 3, 423: 3, 5: 2, 12: 2, 123: 1, 31: 1, 13: 1})
Using collections.Counter - Duration: 15.889999999999418

#解决方案3-缓慢

{1: 4, 2: 5, 3: 4, 4: 6, 5: 2, 34: 4, 423: 3, 234: 3, 42: 5, 12: 2, 13: 1, 23: 10, 123: 1, 31: 1}
Using list comprehension - Duration: 33.0
import pandas as pd
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]

#turning the list into a temporary dataframe
test  = pd.DataFrame(test)

#using the very convenient value_counts() function
df_counts = test.value_counts()
df_counts

然后可以使用dfcounts.index和dfcounts.value来获取数据。