在Python中,给定一个项目,如何在列表中计算它的出现次数?


一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。


当前回答

给定列表X

 import numpy as np
 X = [1, -1, 1, -1, 1]

显示此列表元素的i:frequency(i)的字典为:

{i:X.count(i) for i in np.unique(X)}

输出:

{-1: 2, 1: 3}

其他回答

建议使用numpy的bincount,但它只适用于具有非负整数的1d数组。此外,生成的数组可能会令人困惑(它包含原始列表中从最小值到最大值的整数,并将缺失的整数设置为0)。

使用numpy的更好方法是使用属性return_counts设置为True的唯一函数。它返回一个元组,其中包含一个唯一值数组和每个唯一值的出现数组。

# a = [1, 1, 0, 2, 1, 0, 3, 3]
a_uniq, counts = np.unique(a, return_counts=True)  # array([0, 1, 2, 3]), array([2, 3, 1, 2]

然后我们可以将它们配对为

dict(zip(a_uniq, counts))  # {0: 2, 1: 3, 2: 1, 3: 2}

它也适用于其他数据类型和“2d列表”,例如。

>>> a = [['a', 'b', 'b', 'b'], ['a', 'c', 'c', 'a']]
>>> dict(zip(*np.unique(a, return_counts=True)))
{'a': 3, 'b': 3, 'c': 2}
import pandas as pd
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]

#turning the list into a temporary dataframe
test  = pd.DataFrame(test)

#using the very convenient value_counts() function
df_counts = test.value_counts()
df_counts

然后可以使用dfcounts.index和dfcounts.value来获取数据。

我已经将所有建议的解决方案(以及一些新的解决方案)与perfplot(我的一个小项目)进行了比较。

清点一项

对于足够大的阵列,事实证明

numpy.sum(numpy.array(a) == 1)

比其他解决方案稍快。

清点所有项目

如前所述,

numpy.bincount(a)

是你想要的。


再现绘图的代码:

from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot


def counter(a):
    return Counter(a)


def count(a):
    return dict((i, a.count(i)) for i in set(a))


def bincount(a):
    return numpy.bincount(a)


def pandas_value_counts(a):
    return pandas.Series(a).value_counts()


def occur_dict(a):
    d = {}
    for i in a:
        if i in d:
            d[i] = d[i]+1
        else:
            d[i] = 1
    return d


def count_unsorted_list_items(items):
    counts = defaultdict(int)
    for item in items:
        counts[item] += 1
    return dict(counts)


def operator_countof(a):
    return dict((i, operator.countOf(a, i)) for i in set(a))


perfplot.show(
    setup=lambda n: list(numpy.random.randint(0, 100, n)),
    n_range=[2**k for k in range(20)],
    kernels=[
        counter, count, bincount, pandas_value_counts, occur_dict,
        count_unsorted_list_items, operator_countof
        ],
    equality_check=None,
    logx=True,
    logy=True,
    )
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot


def counter(a):
    return Counter(a)


def count(a):
    return dict((i, a.count(i)) for i in set(a))


def bincount(a):
    return numpy.bincount(a)


def pandas_value_counts(a):
    return pandas.Series(a).value_counts()


def occur_dict(a):
    d = {}
    for i in a:
        if i in d:
            d[i] = d[i] + 1
        else:
            d[i] = 1
    return d


def count_unsorted_list_items(items):
    counts = defaultdict(int)
    for item in items:
        counts[item] += 1
    return dict(counts)


def operator_countof(a):
    return dict((i, operator.countOf(a, i)) for i in set(a))


b = perfplot.bench(
    setup=lambda n: list(numpy.random.randint(0, 100, n)),
    n_range=[2 ** k for k in range(20)],
    kernels=[
        counter,
        count,
        bincount,
        pandas_value_counts,
        occur_dict,
        count_unsorted_list_items,
        operator_countof,
    ],
    equality_check=None,
)
b.save("out.png")
b.show()

使用%timeit查看哪个操作更有效。np.array计数操作应该更快。

 from collections import Counter
 mylist = [1,7,7,7,3,9,9,9,7,9,10,0] 
 types_counts=Counter(mylist)
 print(types_counts)

可能不是最有效的,需要额外的传递才能删除重复项。

功能实现:

arr = np.array(['a','a','b','b','b','c'])
print(set(map(lambda x  : (x , list(arr).count(x)) , arr)))

返回:

{('c', 1), ('b', 3), ('a', 2)}

或返回为dict:

print(dict(map(lambda x  : (x , list(arr).count(x)) , arr)))

返回:

{'b': 3, 'c': 1, 'a': 2}