在Python中,给定一个项目,如何在列表中计算它的出现次数?
一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。
在Python中,给定一个项目,如何在列表中计算它的出现次数?
一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。
当前回答
可能不是最有效的,需要额外的传递才能删除重复项。
功能实现:
arr = np.array(['a','a','b','b','b','c'])
print(set(map(lambda x : (x , list(arr).count(x)) , arr)))
返回:
{('c', 1), ('b', 3), ('a', 2)}
或返回为dict:
print(dict(map(lambda x : (x , list(arr).count(x)) , arr)))
返回:
{'b': 3, 'c': 1, 'a': 2}
其他回答
或者,您也可以自己实现计数器。我是这样做的:
item_list = ['me', 'me', 'you', 'you', 'you', 'they']
occ_dict = {}
for item in item_list:
if item not in occ_dict:
occ_dict[item] = 1
else:
occ_dict[item] +=1
print(occ_dict)
输出:{“我”:2,“你”:3,“他们”:1}
import pandas as pd
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]
#turning the list into a temporary dataframe
test = pd.DataFrame(test)
#using the very convenient value_counts() function
df_counts = test.value_counts()
df_counts
然后可以使用dfcounts.index和dfcounts.value来获取数据。
给定列表X
import numpy as np
X = [1, -1, 1, -1, 1]
显示此列表元素的i:frequency(i)的字典为:
{i:X.count(i) for i in np.unique(X)}
输出:
{-1: 2, 1: 3}
如果只需要单个项目的计数,请使用计数方法:
>>> [1, 2, 3, 4, 1, 4, 1].count(1)
3
重要提示:如果您正在计算多个不同的项目,这会非常缓慢
每个计数调用都会遍历n个元素的整个列表。在循环中调用计数n次意味着总共检查n次,这可能会对性能造成灾难性影响。
如果要计数多个项目,请使用计数器,它只进行n次总检查。
使用itertools.groupby()对所有元素进行计数
通过itertools.groupby()可以获得列表中所有元素的计数。
具有“重复”计数
from itertools import groupby
L = ['a', 'a', 'a', 't', 'q', 'a', 'd', 'a', 'd', 'c'] # Input list
counts = [(i, len(list(c))) for i,c in groupby(L)] # Create value-count pairs as list of tuples
print(counts)
退换商品
[('a', 3), ('t', 1), ('q', 1), ('a', 1), ('d', 1), ('a', 1), ('d', 1), ('c', 1)]
请注意,它是如何将前三个a组合为第一个组的,而其他a组在列表的后面。这是因为输入列表L未排序。如果小组实际上应该是分开的,这有时会是一个好处。
具有唯一计数
如果需要唯一的组计数,只需对输入列表进行排序:
counts = [(i, len(list(c))) for i,c in groupby(sorted(L))]
print(counts)
退换商品
[('a', 5), ('c', 1), ('d', 2), ('q', 1), ('t', 1)]
注意:为了创建唯一计数,与groupby解决方案相比,许多其他答案提供了更简单、更可读的代码。但这里显示的是与重复计数示例平行。