在Python中,给定一个项目,如何在列表中计算它的出现次数?


一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。


当前回答

mot = ["compte", "france", "zied"]
lst = ["compte", "france", "france", "france", "france"]
dict((x, lst.count(x)) for x in set(mot))

这给了

{'compte': 1, 'france': 4, 'zied': 0}

其他回答

我会使用filter(),以Lukasz为例:

>>> lst = [1, 2, 3, 4, 1, 4, 1]
>>> len(filter(lambda x: x==1, lst))
3

如果你能使用熊猫,那么value_counts就在那里救援。

>>> import pandas as pd
>>> a = [1, 2, 3, 4, 1, 4, 1]
>>> pd.Series(a).value_counts()
1    3
4    2
3    1
2    1
dtype: int64

它还会根据频率自动对结果进行排序。

如果希望结果在列表中,请执行以下操作

>>> pd.Series(a).value_counts().reset_index().values.tolist()
[[1, 3], [4, 2], [3, 1], [2, 1]]

统计列表中一项的出现次数

为了只计算一个列表项的出现次数,可以使用count()

>>> l = ["a","b","b"]
>>> l.count("a")
1
>>> l.count("b")
2

计算列表中所有项目的出现次数也称为“清点”列表,或创建清点计数器。

使用count()计算所有项目

要计算l中项目的出现次数,只需使用列表理解和count()方法

[[x,l.count(x)] for x in set(l)]

(或类似于集合(l)中x的字典字典((x,l.count(x))))

例子:

>>> l = ["a","b","b"]
>>> [[x,l.count(x)] for x in set(l)]
[['a', 1], ['b', 2]]
>>> dict((x,l.count(x)) for x in set(l))
{'a': 1, 'b': 2}

使用Counter()计数所有项目

或者,集合库中有更快的Counter类

Counter(l)

例子:

>>> l = ["a","b","b"]
>>> from collections import Counter
>>> Counter(l)
Counter({'b': 2, 'a': 1})

计数器快多少?

我查了一下柜台清点清单的速度有多快。我尝试了两种方法,使用了几个n值,计数器的速度似乎快了大约2倍。

以下是我使用的脚本:

from __future__ import print_function
import timeit

t1=timeit.Timer('Counter(l)', \
                'import random;import string;from collections import Counter;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
                )

t2=timeit.Timer('[[x,l.count(x)] for x in set(l)]',
                'import random;import string;n=1000;l=[random.choice(string.ascii_letters) for x in range(n)]'
                )

print("Counter(): ", t1.repeat(repeat=3,number=10000))
print("count():   ", t2.repeat(repeat=3,number=10000)

输出:

Counter():  [0.46062711701961234, 0.4022796869976446, 0.3974247490405105]
count():    [7.779430688009597, 7.962715800967999, 8.420845870045014]
def countfrequncyinarray(arr1):
    r=len(arr1)
    return {i:arr1.count(i) for i in range(1,r+1)}
arr1=[4,4,4,4]
a=countfrequncyinarray(arr1)
print(a)

建议使用numpy的bincount,但它只适用于具有非负整数的1d数组。此外,生成的数组可能会令人困惑(它包含原始列表中从最小值到最大值的整数,并将缺失的整数设置为0)。

使用numpy的更好方法是使用属性return_counts设置为True的唯一函数。它返回一个元组,其中包含一个唯一值数组和每个唯一值的出现数组。

# a = [1, 1, 0, 2, 1, 0, 3, 3]
a_uniq, counts = np.unique(a, return_counts=True)  # array([0, 1, 2, 3]), array([2, 3, 1, 2]

然后我们可以将它们配对为

dict(zip(a_uniq, counts))  # {0: 2, 1: 3, 2: 1, 3: 2}

它也适用于其他数据类型和“2d列表”,例如。

>>> a = [['a', 'b', 'b', 'b'], ['a', 'c', 'c', 'a']]
>>> dict(zip(*np.unique(a, return_counts=True)))
{'a': 3, 'b': 3, 'c': 2}