在Python中,给定一个项目,如何在列表中计算它的出现次数?
一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。
在Python中,给定一个项目,如何在列表中计算它的出现次数?
一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。
当前回答
mot = ["compte", "france", "zied"]
lst = ["compte", "france", "france", "france", "france"]
dict((x, lst.count(x)) for x in set(mot))
这给了
{'compte': 1, 'france': 4, 'zied': 0}
其他回答
要计算具有共同类型的不同元素的数量,请执行以下操作:
li = ['A0','c5','A8','A2','A5','c2','A3','A9']
print sum(1 for el in li if el[0]=='A' and el[1] in '01234')
给予
3,而不是6
我已经将所有建议的解决方案(以及一些新的解决方案)与perfplot(我的一个小项目)进行了比较。
清点一项
对于足够大的阵列,事实证明
numpy.sum(numpy.array(a) == 1)
比其他解决方案稍快。
清点所有项目
如前所述,
numpy.bincount(a)
是你想要的。
再现绘图的代码:
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot
def counter(a):
return Counter(a)
def count(a):
return dict((i, a.count(i)) for i in set(a))
def bincount(a):
return numpy.bincount(a)
def pandas_value_counts(a):
return pandas.Series(a).value_counts()
def occur_dict(a):
d = {}
for i in a:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
def count_unsorted_list_items(items):
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
def operator_countof(a):
return dict((i, operator.countOf(a, i)) for i in set(a))
perfplot.show(
setup=lambda n: list(numpy.random.randint(0, 100, n)),
n_range=[2**k for k in range(20)],
kernels=[
counter, count, bincount, pandas_value_counts, occur_dict,
count_unsorted_list_items, operator_countof
],
equality_check=None,
logx=True,
logy=True,
)
from collections import Counter
from collections import defaultdict
import numpy
import operator
import pandas
import perfplot
def counter(a):
return Counter(a)
def count(a):
return dict((i, a.count(i)) for i in set(a))
def bincount(a):
return numpy.bincount(a)
def pandas_value_counts(a):
return pandas.Series(a).value_counts()
def occur_dict(a):
d = {}
for i in a:
if i in d:
d[i] = d[i] + 1
else:
d[i] = 1
return d
def count_unsorted_list_items(items):
counts = defaultdict(int)
for item in items:
counts[item] += 1
return dict(counts)
def operator_countof(a):
return dict((i, operator.countOf(a, i)) for i in set(a))
b = perfplot.bench(
setup=lambda n: list(numpy.random.randint(0, 100, n)),
n_range=[2 ** k for k in range(20)],
kernels=[
counter,
count,
bincount,
pandas_value_counts,
occur_dict,
count_unsorted_list_items,
operator_countof,
],
equality_check=None,
)
b.save("out.png")
b.show()
给定列表X
import numpy as np
X = [1, -1, 1, -1, 1]
显示此列表元素的i:frequency(i)的字典为:
{i:X.count(i) for i in np.unique(X)}
输出:
{-1: 2, 1: 3}
我今天遇到了这个问题,在我想检查SO之前,我推出了自己的解决方案
dict((i,a.count(i)) for i in a)
对于大列表来说真的很慢。我的解决方案
def occurDict(items):
d = {}
for i in items:
if i in d:
d[i] = d[i]+1
else:
d[i] = 1
return d
实际上比Counter解决方案快一点,至少对于Python 2.7来说是这样。
还可以使用内置模块运算符的countOf方法。
>>> import operator
>>> operator.countOf([1, 2, 3, 4, 1, 4, 1], 1)
3