这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

如果你可以控制N,列出所有质数的最快方法就是预先计算它们。认真对待。预计算是一种被忽视的优化方法。

其他回答

我知道比赛已经结束好几年了。...

尽管如此,这是我对纯python质数筛子的建议,基于在向前处理筛子时使用适当的步骤省略2、3和5的倍数。尽管如此,在N<10^9时,它实际上比@Robert William Hanks的优解rwh_primes2和rwh_primes1要慢。通过使用大于1.5* 10^8的ctypes.c_ushort筛分数组,可以在某种程度上适应内存限制。

10^6

$ python -mtimeit -s"import primeSieveSpeedComp" "primeSieveSpeedComp. primesieveseq (1000000)" 10个循环,最好的3:46.7毫秒每循环

import primeSieveSpeedComp (primeSieveSpeedComp) “primeSieveSpeedComp.rwh_primes1(1000000)”10个循环,最好的3:43.2 每回路Msec $ python -m timeit -s"import primeSieveSpeedComp" “primeSieveSpeedComp.rwh_primes2(1000000)”10圈,最好成绩是3:34.5 每回路Msec

10^7

$ python -mtimeit -s"import primeSieveSpeedComp" "primeSieveSpeedComp. primesieveseq (10000000)" 10个循环,最好是3:530毫秒每循环

import primeSieveSpeedComp (primeSieveSpeedComp) “primeSieveSpeedComp.rwh_primes1(10000000)”10圈,3:494的最佳成绩 每回路Msec $ python -m timeit -s"import primeSieveSpeedComp" “primeSieveSpeedComp.rwh_primes2(10000000)”10圈,最好的3:375 每回路Msec

10^8

$ python -mtimeit -s"import primeSieveSpeedComp" "primeSieveSpeedComp. primesieveseq (100000000)" 10圈,最好的3:5.55秒每圈

import primeSieveSpeedComp (primeSieveSpeedComp) “primeSieveSpeedComp.rwh_primes1(100000000)”10圈,最好成绩是3:5.33 秒/循环 $ python -m timeit -s"import primeSieveSpeedComp" “primeSieveSpeedComp.rwh_primes2(100000000)”10圈,最好的3:3.95 秒/循环

10^9

$ python -mtimeit -s"import primeSieveSpeedComp" "primeSieveSpeedComp. primesieveseq (1000000000)" 10圈,最好的3圈:每圈61.2秒

$ python -mtimeit -n 3 -s"import primeSieveSpeedComp" “primeSieveSpeedComp.rwh_primes1(1000000000)”3圈,最好的3:97.8 秒/循环 $ python -m timeit -s"import primeSieveSpeedComp" “primeSieveSpeedComp.rwh_primes2(1000000000)”10个循环,3个最好: 每循环41.9秒

您可以将下面的代码复制到ubuntu primeSieveSpeedComp中以查看此测试。

def primeSieveSeq(MAX_Int):
    if MAX_Int > 5*10**8:
        import ctypes
        int16Array = ctypes.c_ushort * (MAX_Int >> 1)
        sieve = int16Array()
        #print 'uses ctypes "unsigned short int Array"'
    else:
        sieve = (MAX_Int >> 1) * [False]
        #print 'uses python list() of long long int'
    if MAX_Int < 10**8:
        sieve[4::3] = [True]*((MAX_Int - 8)/6+1)
        sieve[12::5] = [True]*((MAX_Int - 24)/10+1)
    r = [2, 3, 5]
    n = 0
    for i in xrange(int(MAX_Int**0.5)/30+1):
        n += 3
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 3
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
    if MAX_Int < 10**8:
        return [2, 3, 5]+[(p << 1) + 1 for p in [n for n in xrange(3, MAX_Int >> 1) if not sieve[n]]]
    n = n >> 1
    try:
        for i in xrange((MAX_Int-2*n)/30 + 1):
            n += 3
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 3
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
    except:
        pass
    return r

对于足够大的N,真正最快的解决方案是下载一个预先计算的质数列表,将其存储为元组,并执行如下操作:

for pos,i in enumerate(primes):
    if i > N:
        print primes[:pos]

如果只有N >个质数[-1],则计算更多的质数并将新列表保存在代码中,以便下次同样快。

要跳出思维定势。

这里是最快的函数之一的两个更新版本(纯Python 3.6),

from itertools import compress

def rwh_primes1v1(n):
    """ Returns  a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = bytearray((n-i*i-1)//(2*i)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

def rwh_primes1v2(n):
    """ Returns a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2+1)
    for i in range(1,int(n**0.5)//2+1):
        if sieve[i]:
            sieve[2*i*(i+1)::2*i+1] = bytearray((n//2-2*i*(i+1))//(2*i+1)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

如果你接受itertools,但不接受numpy,这里有一个针对Python 3的rwh_primes2的改编版本,它在我的机器上运行速度大约是原来的两倍。唯一的实质性变化是使用bytearray而不是列表来表示布尔值,并使用压缩而不是列表推导来构建最终列表。(如果可以的话,我会把这句话作为moarningsun之类的评论。)

import itertools
izip = itertools.zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    zero = bytearray([False])
    size = n//3 + (n % 6 == 2)
    sieve = bytearray([True]) * size
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        start = (k*k+4*k-2*k*(i&1))//3
        sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
        sieve[  start ::2*k]=zero*((size -   start  - 1) // (2 * k) + 1)
    ans = [2,3]
    poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
    ans.extend(compress(poss, sieve))
    return ans

比较:

>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674

and

>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801

这是你和别人比较的方式。

# You have to list primes upto n
nums = xrange(2, n)
for i in range(2, 10):
    nums = filter(lambda s: s==i or s%i, nums)
print nums

这么简单……