这是我能想到的最好的算法。
def get_primes(n):
numbers = set(range(n, 1, -1))
primes = []
while numbers:
p = numbers.pop()
primes.append(p)
numbers.difference_update(set(range(p*2, n+1, p)))
return primes
>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import get_primes').timeit(1)
1.1499958793645562
还能做得更快吗?
这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:
>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True
使用Numpy实现的半筛子略有不同:
http://rebrained.com/?p=458
import math
import numpy
def prime6(upto):
primes=numpy.arange(3,upto+1,2)
isprime=numpy.ones((upto-1)/2,dtype=bool)
for factor in primes[:int(math.sqrt(upto))]:
if isprime[(factor-2)/2]: isprime[(factor*3-2)/2:(upto-1)/2:factor]=0
return numpy.insert(primes[isprime],0,2)
有人能把这个和其他时间比较一下吗?在我的机器上,它似乎与其他Numpy半筛相当。
假设N < 9,080,191, Miller-Rabin's Primality检验的确定性实现
import sys
def miller_rabin_pass(a, n):
d = n - 1
s = 0
while d % 2 == 0:
d >>= 1
s += 1
a_to_power = pow(a, d, n)
if a_to_power == 1:
return True
for i in range(s-1):
if a_to_power == n - 1:
return True
a_to_power = (a_to_power * a_to_power) % n
return a_to_power == n - 1
def miller_rabin(n):
if n <= 2:
return n == 2
if n < 2_047:
return miller_rabin_pass(2, n)
return all(miller_rabin_pass(a, n) for a in (31, 73))
n = int(sys.argv[1])
primes = [2]
for p in range(3,n,2):
if miller_rabin(p):
primes.append(p)
print len(primes)
根据维基百科(http://en.wikipedia.org/wiki/Miller -Rabin_primality_test)上的文章,对于a = 37和73,测试N < 9,080,191足以判断N是否为合数。
我从原始米勒-拉宾测试的概率实现中改编了源代码:https://www.literateprograms.org/miller-rabin_primality_test__python_.html
使用Numpy实现的半筛子略有不同:
http://rebrained.com/?p=458
import math
import numpy
def prime6(upto):
primes=numpy.arange(3,upto+1,2)
isprime=numpy.ones((upto-1)/2,dtype=bool)
for factor in primes[:int(math.sqrt(upto))]:
if isprime[(factor-2)/2]: isprime[(factor*3-2)/2:(upto-1)/2:factor]=0
return numpy.insert(primes[isprime],0,2)
有人能把这个和其他时间比较一下吗?在我的机器上,它似乎与其他Numpy半筛相当。
对于最快的代码,numpy解决方案是最好的。不过,出于纯粹的学术原因,我发布了我的纯python版本,它比上面发布的食谱版本快不到50%。由于我将整个列表放在内存中,所以需要足够的空间来容纳所有内容,但它的可伸缩性似乎相当好。
def daniel_sieve_2(maxNumber):
"""
Given a number, returns all numbers less than or equal to
that number which are prime.
"""
allNumbers = range(3, maxNumber+1, 2)
for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
if allNumbers[mIndex] == 0:
continue
# now set all multiples to 0
for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
allNumbers[index] = 0
return [2] + filter(lambda n: n!=0, allNumbers)
结果是:
>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
... "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
... "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms
从2021年的答案开始,我还没有发现二进制数组方法对10亿以下的质数有利。
但我可以用几个技巧将质数从2加速到接近x2:
使用numexpr库将numpy表达式转换为分配较少的紧循环
取代np。有更快的选择
以某种方式操作筛选的前9个元素,因此不需要改变数组的形状
总之,在我的机器上,质数< 10亿的时间从25秒变成了14.5秒
import numexpr as ne
import numpy as np
def primesfrom2to_numexpr(n):
# https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Input n>=24, Returns a array of primes, 2 <= p < n + a few over"""
sieve = np.zeros((n // 3 + (n % 6 == 2))//4+1, dtype=np.int32)
ne.evaluate('sieve + 0x01010101', out=sieve)
sieve = sieve.view('int8')
#sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool_)
sieve[0] = 0
for i in np.arange(int(n ** 0.5) // 3 + 1):
if sieve[i]:
k = 3 * i + 1 | 1
sieve[((k * k) // 3)::2 * k] = 0
sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = 0
sieve[[0,8]] = 1
result = np.flatnonzero(sieve)
ne.evaluate('result * 3 + 1 + result%2', out=result)
result[:9] = [2,3,5,7,11,13,17,19,23]
return result
这里有一个来自Python Cookbook的非常简洁的示例——该URL的最快版本是:
import itertools
def erat2( ):
D = { }
yield 2
for q in itertools.islice(itertools.count(3), 0, None, 2):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
x = p + q
while x in D or not (x&1):
x += p
D[x] = p
这就给出了
def get_primes_erat(n):
return list(itertools.takewhile(lambda p: p<n, erat2()))
在shell提示符(正如我喜欢做的那样)中测量这段代码在pri.py中,我观察到:
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop
所以看起来食谱解决方案的速度是原来的两倍多。