这是我能想到的最好的算法。
def get_primes(n):
numbers = set(range(n, 1, -1))
primes = []
while numbers:
p = numbers.pop()
primes.append(p)
numbers.difference_update(set(range(p*2, n+1, p)))
return primes
>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import get_primes').timeit(1)
1.1499958793645562
还能做得更快吗?
这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:
>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True
从2021年的答案开始,我还没有发现二进制数组方法对10亿以下的质数有利。
但我可以用几个技巧将质数从2加速到接近x2:
使用numexpr库将numpy表达式转换为分配较少的紧循环
取代np。有更快的选择
以某种方式操作筛选的前9个元素,因此不需要改变数组的形状
总之,在我的机器上,质数< 10亿的时间从25秒变成了14.5秒
import numexpr as ne
import numpy as np
def primesfrom2to_numexpr(n):
# https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Input n>=24, Returns a array of primes, 2 <= p < n + a few over"""
sieve = np.zeros((n // 3 + (n % 6 == 2))//4+1, dtype=np.int32)
ne.evaluate('sieve + 0x01010101', out=sieve)
sieve = sieve.view('int8')
#sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool_)
sieve[0] = 0
for i in np.arange(int(n ** 0.5) // 3 + 1):
if sieve[i]:
k = 3 * i + 1 | 1
sieve[((k * k) // 3)::2 * k] = 0
sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = 0
sieve[[0,8]] = 1
result = np.flatnonzero(sieve)
ne.evaluate('result * 3 + 1 + result%2', out=result)
result[:9] = [2,3,5,7,11,13,17,19,23]
return result
随着时间的推移,我收集了几个质数筛子。我电脑上最快的是这样的:
from time import time
# 175 ms for all the primes up to the value 10**6
def primes_sieve(limit):
a = [True] * limit
a[0] = a[1] = False
#a[2] = True
for n in xrange(4, limit, 2):
a[n] = False
root_limit = int(limit**.5)+1
for i in xrange(3,root_limit):
if a[i]:
for n in xrange(i*i, limit, 2*i):
a[n] = False
return a
LIMIT = 10**6
s=time()
primes = primes_sieve(LIMIT)
print time()-s
这是使用存储列表查找质数的一种优雅而简单的解决方案。从4个变量开始,你只需要测试除数的奇数质数,你只需要测试你要测试的质数的一半(测试9,11,13是否能整除17没有意义)。它将先前存储的质数作为除数进行测试。
# Program to calculate Primes
primes = [1,3,5,7]
for n in range(9,100000,2):
for x in range(1,(len(primes)/2)):
if n % primes[x] == 0:
break
else:
primes.append(n)
print primes
这里有一个来自Python Cookbook的非常简洁的示例——该URL的最快版本是:
import itertools
def erat2( ):
D = { }
yield 2
for q in itertools.islice(itertools.count(3), 0, None, 2):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
x = p + q
while x in D or not (x&1):
x += p
D[x] = p
这就给出了
def get_primes_erat(n):
return list(itertools.takewhile(lambda p: p<n, erat2()))
在shell提示符(正如我喜欢做的那样)中测量这段代码在pri.py中,我观察到:
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop
所以看起来食谱解决方案的速度是原来的两倍多。