这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

从2021年的答案开始,我还没有发现二进制数组方法对10亿以下的质数有利。

但我可以用几个技巧将质数从2加速到接近x2:

使用numexpr库将numpy表达式转换为分配较少的紧循环 取代np。有更快的选择 以某种方式操作筛选的前9个元素,因此不需要改变数组的形状

总之,在我的机器上,质数< 10亿的时间从25秒变成了14.5秒

import numexpr as ne
import numpy as np

def primesfrom2to_numexpr(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=24, Returns a array of primes, 2 <= p < n + a few over"""
    sieve = np.zeros((n // 3 + (n % 6 == 2))//4+1, dtype=np.int32)
    ne.evaluate('sieve + 0x01010101', out=sieve)
    sieve = sieve.view('int8')
    #sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool_)
    sieve[0] = 0
    for i in np.arange(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = 0
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = 0
    sieve[[0,8]] = 1
    result = np.flatnonzero(sieve)
    ne.evaluate('result * 3 + 1 + result%2', out=result)
    result[:9] = [2,3,5,7,11,13,17,19,23]
    return result

其他回答

这是使用存储列表查找质数的一种优雅而简单的解决方案。从4个变量开始,你只需要测试除数的奇数质数,你只需要测试你要测试的质数的一半(测试9,11,13是否能整除17没有意义)。它将先前存储的质数作为除数进行测试。

    # Program to calculate Primes
 primes = [1,3,5,7]
for n in range(9,100000,2):
    for x in range(1,(len(primes)/2)):
        if n % primes[x] == 0:
            break
    else:
        primes.append(n)
print primes

如果你不想重新发明轮子,你可以安装符号数学库symphony(是的,它与Python 3兼容)

pip install sympy

然后使用质数函数

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))

从2021年的答案开始,我还没有发现二进制数组方法对10亿以下的质数有利。

但我可以用几个技巧将质数从2加速到接近x2:

使用numexpr库将numpy表达式转换为分配较少的紧循环 取代np。有更快的选择 以某种方式操作筛选的前9个元素,因此不需要改变数组的形状

总之,在我的机器上,质数< 10亿的时间从25秒变成了14.5秒

import numexpr as ne
import numpy as np

def primesfrom2to_numexpr(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=24, Returns a array of primes, 2 <= p < n + a few over"""
    sieve = np.zeros((n // 3 + (n % 6 == 2))//4+1, dtype=np.int32)
    ne.evaluate('sieve + 0x01010101', out=sieve)
    sieve = sieve.view('int8')
    #sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool_)
    sieve[0] = 0
    for i in np.arange(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = 0
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = 0
    sieve[[0,8]] = 1
    result = np.flatnonzero(sieve)
    ne.evaluate('result * 3 + 1 + result%2', out=result)
    result[:9] = [2,3,5,7,11,13,17,19,23]
    return result

这里是最快的函数之一的两个更新版本(纯Python 3.6),

from itertools import compress

def rwh_primes1v1(n):
    """ Returns  a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = bytearray((n-i*i-1)//(2*i)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

def rwh_primes1v2(n):
    """ Returns a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2+1)
    for i in range(1,int(n**0.5)//2+1):
        if sieve[i]:
            sieve[2*i*(i+1)::2*i+1] = bytearray((n//2-2*i*(i+1))//(2*i+1)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

下面是我在Python中通常用来生成质数的代码:

$ python -mtimeit -s'import sieve' 'sieve.sieve(1000000)' 
10 loops, best of 3: 445 msec per loop
$ cat sieve.py
from math import sqrt

def sieve(size):
 prime=[True]*size
 rng=xrange
 limit=int(sqrt(size))

 for i in rng(3,limit+1,+2):
  if prime[i]:
   prime[i*i::+i]=[False]*len(prime[i*i::+i])

 return [2]+[i for i in rng(3,size,+2) if prime[i]]

if __name__=='__main__':
 print sieve(100)

它不能与这里发布的更快的解决方案竞争,但至少它是纯python。

谢谢你提出这个问题。我今天真的学到了很多东西。