这是我能想到的最好的算法。
def get_primes(n):
numbers = set(range(n, 1, -1))
primes = []
while numbers:
p = numbers.pop()
primes.append(p)
numbers.difference_update(set(range(p*2, n+1, p)))
return primes
>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import get_primes').timeit(1)
1.1499958793645562
还能做得更快吗?
这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:
>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True
我很惊讶居然没人提到numba。
该版本在2.47 ms±36.5µs内达到1M标记。
几年前,维基百科页面上出现了一个阿特金筛子的伪代码。这已经不存在了,参考阿特金筛似乎是一个不同的算法。一个2007/03/01版本的维基百科页面(Primer number as 2007-03-01)显示了我用作参考的伪代码。
import numpy as np
from numba import njit
@njit
def nb_primes(n):
# Generates prime numbers 2 <= p <= n
# Atkin's sieve -- see https://en.wikipedia.org/w/index.php?title=Prime_number&oldid=111775466
sqrt_n = int(np.sqrt(n)) + 1
# initialize the sieve
s = np.full(n + 1, -1, dtype=np.int8)
s[2] = 1
s[3] = 1
# put in candidate primes:
# integers which have an odd number of
# representations by certain quadratic forms
for x in range(1, sqrt_n):
x2 = x * x
for y in range(1, sqrt_n):
y2 = y * y
k = 4 * x2 + y2
if k <= n and (k % 12 == 1 or k % 12 == 5): s[k] *= -1
k = 3 * x2 + y2
if k <= n and (k % 12 == 7): s[k] *= -1
k = 3 * x2 - y2
if k <= n and x > y and k % 12 == 11: s[k] *= -1
# eliminate composites by sieving
for k in range(5, sqrt_n):
if s[k]:
k2 = k*k
# k is prime, omit multiples of its square; this is sufficient because
# composites which managed to get on the list cannot be square-free
for i in range(1, n // k2 + 1):
j = i * k2 # j ∈ {k², 2k², 3k², ..., n}
s[j] = -1
return np.nonzero(s>0)[0]
# initial run for "compilation"
nb_primes(10)
时机
In[10]:
%timeit nb_primes(1_000_000)
Out[10]:
2.47 ms ± 36.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In[11]:
%timeit nb_primes(10_000_000)
Out[11]:
33.4 ms ± 373 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In[12]:
%timeit nb_primes(100_000_000)
Out[12]:
828 ms ± 5.64 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
对于最快的代码,numpy解决方案是最好的。不过,出于纯粹的学术原因,我发布了我的纯python版本,它比上面发布的食谱版本快不到50%。由于我将整个列表放在内存中,所以需要足够的空间来容纳所有内容,但它的可伸缩性似乎相当好。
def daniel_sieve_2(maxNumber):
"""
Given a number, returns all numbers less than or equal to
that number which are prime.
"""
allNumbers = range(3, maxNumber+1, 2)
for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
if allNumbers[mIndex] == 0:
continue
# now set all multiples to 0
for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
allNumbers[index] = 0
return [2] + filter(lambda n: n!=0, allNumbers)
结果是:
>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
... "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
... "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms
在Pure Python中最快的质数筛分:
from itertools import compress
def half_sieve(n):
"""
Returns a list of prime numbers less than `n`.
"""
if n <= 2:
return []
sieve = bytearray([True]) * (n // 2)
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i // 2]:
sieve[i * i // 2::i] = bytearray((n - i * i - 1) // (2 * i) + 1)
primes = list(compress(range(1, n, 2), sieve))
primes[0] = 2
return primes
我优化了埃拉托色尼筛子的速度和内存。
基准
from time import clock
import platform
def benchmark(iterations, limit):
start = clock()
for x in range(iterations):
half_sieve(limit)
end = clock() - start
print(f'{end/iterations:.4f} seconds for primes < {limit}')
if __name__ == '__main__':
print(platform.python_version())
print(platform.platform())
print(platform.processor())
it = 10
for pw in range(4, 9):
benchmark(it, 10**pw)
输出
>>> 3.6.7
>>> Windows-10-10.0.17763-SP0
>>> Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
>>> 0.0003 seconds for primes < 10000
>>> 0.0021 seconds for primes < 100000
>>> 0.0204 seconds for primes < 1000000
>>> 0.2389 seconds for primes < 10000000
>>> 2.6702 seconds for primes < 100000000
下面是我在Python中通常用来生成质数的代码:
$ python -mtimeit -s'import sieve' 'sieve.sieve(1000000)'
10 loops, best of 3: 445 msec per loop
$ cat sieve.py
from math import sqrt
def sieve(size):
prime=[True]*size
rng=xrange
limit=int(sqrt(size))
for i in rng(3,limit+1,+2):
if prime[i]:
prime[i*i::+i]=[False]*len(prime[i*i::+i])
return [2]+[i for i in rng(3,size,+2) if prime[i]]
if __name__=='__main__':
print sieve(100)
它不能与这里发布的更快的解决方案竞争,但至少它是纯python。
谢谢你提出这个问题。我今天真的学到了很多东西。
这里有一个来自Python Cookbook的非常简洁的示例——该URL的最快版本是:
import itertools
def erat2( ):
D = { }
yield 2
for q in itertools.islice(itertools.count(3), 0, None, 2):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
x = p + q
while x in D or not (x&1):
x += p
D[x] = p
这就给出了
def get_primes_erat(n):
return list(itertools.takewhile(lambda p: p<n, erat2()))
在shell提示符(正如我喜欢做的那样)中测量这段代码在pri.py中,我观察到:
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop
所以看起来食谱解决方案的速度是原来的两倍多。
我可能迟到了,但必须为此添加自己的代码。它使用大约n/2的空间,因为我们不需要存储偶数,我还使用bitarray python模块,进一步大幅减少内存消耗,并允许计算所有高达1,000,000,000的质数
from bitarray import bitarray
def primes_to(n):
size = n//2
sieve = bitarray(size)
sieve.setall(1)
limit = int(n**0.5)
for i in range(1,limit):
if sieve[i]:
val = 2*i+1
sieve[(i+i*val)::val] = 0
return [2] + [2*i+1 for i, v in enumerate(sieve) if v and i > 0]
python -m timeit -n10 -s "import euler" "euler.primes_to(1000000000)"
10 loops, best of 3: 46.5 sec per loop
这是在64bit 2.4GHZ MAC OSX 10.8.3上运行的