这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

如果你接受itertools,但不接受numpy,这里有一个针对Python 3的rwh_primes2的改编版本,它在我的机器上运行速度大约是原来的两倍。唯一的实质性变化是使用bytearray而不是列表来表示布尔值,并使用压缩而不是列表推导来构建最终列表。(如果可以的话,我会把这句话作为moarningsun之类的评论。)

import itertools
izip = itertools.zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    zero = bytearray([False])
    size = n//3 + (n % 6 == 2)
    sieve = bytearray([True]) * size
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        start = (k*k+4*k-2*k*(i&1))//3
        sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
        sieve[  start ::2*k]=zero*((size -   start  - 1) // (2 * k) + 1)
    ans = [2,3]
    poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
    ans.extend(compress(poss, sieve))
    return ans

比较:

>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674

and

>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801

其他回答

第一次使用python,所以我在这里使用的一些方法可能看起来有点麻烦。我只是直接将我的c++代码转换为python,这就是我所拥有的(尽管在python中有点慢)

#!/usr/bin/env python
import time

def GetPrimes(n):

    Sieve = [1 for x in xrange(n)]

    Done = False
    w = 3

    while not Done:

        for q in xrange (3, n, 2):
            Prod = w*q
            if Prod < n:
                Sieve[Prod] = 0
            else:
                break

        if w > (n/2):
            Done = True
        w += 2

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes.py 在12.799119秒内找到664579个质数!

#!/usr/bin/env python
import time

def GetPrimes2(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*3, n, k*2):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes2(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes2.py 在10.230172秒内找到664579个质数!

#!/usr/bin/env python
import time

def GetPrimes3(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*k, n, k << 1):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes3(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

python Primes2.py 在7.113776秒内找到664579个质数!

这里有一个来自Python Cookbook的非常简洁的示例——该URL的最快版本是:

import itertools
def erat2( ):
    D = {  }
    yield 2
    for q in itertools.islice(itertools.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = p + q
            while x in D or not (x&1):
                x += p
            D[x] = p

这就给出了

def get_primes_erat(n):
  return list(itertools.takewhile(lambda p: p<n, erat2()))

在shell提示符(正如我喜欢做的那样)中测量这段代码在pri.py中,我观察到:

$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop

所以看起来食谱解决方案的速度是原来的两倍多。

你有一个更快的代码和最简单的代码生成质数。 但对于更大的数字,当n=10000, 10000000时,它不起作用,可能是。pop()方法失败了

考虑:N是质数吗?

case 1: You got some factors of N, for i in range(2, N): If N is prime loop is performed for ~(N-2) times. else less number of times case 2: for i in range(2, int(math.sqrt(N)): Loop is performed for almost ~(sqrt(N)-2) times if N is prime else will break somewhere case 3: Better We Divide N With Only number of primes<=sqrt(N) Where loop is performed for only π(sqrt(N)) times π(sqrt(N)) << sqrt(N) as N increases from math import sqrt from time import * prime_list = [2] n = int(input()) s = time() for n0 in range(2,n+1): for i0 in prime_list: if n0%i0==0: break elif i0>=int(sqrt(n0)): prime_list.append(n0) break e = time() print(e-s) #print(prime_list); print(f'pi({n})={len(prime_list)}') print(f'{n}: {len(prime_list)}, time: {e-s}') Output 100: 25, time: 0.00010275840759277344 1000: 168, time: 0.0008606910705566406 10000: 1229, time: 0.015588521957397461 100000: 9592, time: 0.023436546325683594 1000000: 78498, time: 4.1965954303741455 10000000: 664579, time: 109.24591708183289 100000000: 5761455, time: 2289.130858898163

小于1000似乎很慢,但小于10^6我认为更快。

然而,我无法理解时间的复杂性。

这是你和别人比较的方式。

# You have to list primes upto n
nums = xrange(2, n)
for i in range(2, 10):
    nums = filter(lambda s: s==i or s%i, nums)
print nums

这么简单……

假设N < 9,080,191, Miller-Rabin's Primality检验的确定性实现

import sys

def miller_rabin_pass(a, n):
    d = n - 1
    s = 0
    while d % 2 == 0:
        d >>= 1
        s += 1

    a_to_power = pow(a, d, n)
    if a_to_power == 1:
        return True
    for i in range(s-1):
        if a_to_power == n - 1:
            return True
        a_to_power = (a_to_power * a_to_power) % n
    return a_to_power == n - 1


def miller_rabin(n):
    if n <= 2:
        return n == 2

    if n < 2_047:
        return miller_rabin_pass(2, n)

    return all(miller_rabin_pass(a, n) for a in (31, 73))


n = int(sys.argv[1])
primes = [2]
for p in range(3,n,2):
  if miller_rabin(p):
    primes.append(p)
print len(primes)

根据维基百科(http://en.wikipedia.org/wiki/Miller -Rabin_primality_test)上的文章,对于a = 37和73,测试N < 9,080,191足以判断N是否为合数。

我从原始米勒-拉宾测试的概率实现中改编了源代码:https://www.literateprograms.org/miller-rabin_primality_test__python_.html